# Properties

 Label 68.d Modulus $68$ Conductor $68$ Order $2$ Real yes Primitive yes Minimal yes Parity odd

# Related objects

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(68, base_ring=CyclotomicField(2))

M = H._module

chi = DirichletCharacter(H, M([1,1]))

chi.galois_orbit()

[g,chi] = znchar(Mod(67,68))

order = charorder(g,chi)

[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Kronecker symbol representation

sage: kronecker_character(-68)

pari: znchartokronecker(g,chi)

$$\displaystyle\left(\frac{-68}{\bullet}\right)$$

## Basic properties

 Modulus: $$68$$ Conductor: $$68$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$2$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: yes Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Related number fields

 Field of values: $$\Q$$ Fixed field: $$\Q(\sqrt{-17})$$

## Characters in Galois orbit

Character $$-1$$ $$1$$ $$3$$ $$5$$ $$7$$ $$9$$ $$11$$ $$13$$ $$15$$ $$19$$ $$21$$ $$23$$
$$\chi_{68}(67,\cdot)$$ $$-1$$ $$1$$ $$1$$ $$-1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$-1$$ $$-1$$ $$1$$ $$1$$