sage: H = DirichletGroup(68)
pari: g = idealstar(,68,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 32 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{16}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{68}(35,\cdot)$, $\chi_{68}(37,\cdot)$ |
First 32 of 32 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(19\) | \(21\) | \(23\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{68}(1,\cdot)\) | 68.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{68}(3,\cdot)\) | 68.i | 16 | yes | \(1\) | \(1\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(i\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(-i\) | \(e\left(\frac{7}{16}\right)\) |
\(\chi_{68}(5,\cdot)\) | 68.j | 16 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(i\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(-i\) | \(e\left(\frac{11}{16}\right)\) |
\(\chi_{68}(7,\cdot)\) | 68.i | 16 | yes | \(1\) | \(1\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(-i\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(i\) | \(e\left(\frac{13}{16}\right)\) |
\(\chi_{68}(9,\cdot)\) | 68.h | 8 | no | \(1\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(i\) | \(e\left(\frac{7}{8}\right)\) | \(-1\) | \(-i\) | \(-i\) | \(-1\) | \(e\left(\frac{7}{8}\right)\) |
\(\chi_{68}(11,\cdot)\) | 68.i | 16 | yes | \(1\) | \(1\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(-i\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(i\) | \(e\left(\frac{1}{16}\right)\) |
\(\chi_{68}(13,\cdot)\) | 68.e | 4 | no | \(1\) | \(1\) | \(i\) | \(i\) | \(-i\) | \(-1\) | \(-i\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(-i\) |
\(\chi_{68}(15,\cdot)\) | 68.g | 8 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(-i\) | \(e\left(\frac{1}{8}\right)\) | \(-1\) | \(-i\) | \(-i\) | \(-1\) | \(e\left(\frac{1}{8}\right)\) |
\(\chi_{68}(19,\cdot)\) | 68.g | 8 | yes | \(-1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(-i\) | \(e\left(\frac{5}{8}\right)\) | \(-1\) | \(-i\) | \(-i\) | \(-1\) | \(e\left(\frac{5}{8}\right)\) |
\(\chi_{68}(21,\cdot)\) | 68.e | 4 | no | \(1\) | \(1\) | \(-i\) | \(-i\) | \(i\) | \(-1\) | \(i\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(i\) |
\(\chi_{68}(23,\cdot)\) | 68.i | 16 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(-i\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(i\) | \(e\left(\frac{9}{16}\right)\) |
\(\chi_{68}(25,\cdot)\) | 68.h | 8 | no | \(1\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(i\) | \(e\left(\frac{3}{8}\right)\) | \(-1\) | \(-i\) | \(-i\) | \(-1\) | \(e\left(\frac{3}{8}\right)\) |
\(\chi_{68}(27,\cdot)\) | 68.i | 16 | yes | \(1\) | \(1\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(-i\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(i\) | \(e\left(\frac{5}{16}\right)\) |
\(\chi_{68}(29,\cdot)\) | 68.j | 16 | no | \(-1\) | \(1\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(i\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(-i\) | \(e\left(\frac{3}{16}\right)\) |
\(\chi_{68}(31,\cdot)\) | 68.i | 16 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(i\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(-i\) | \(e\left(\frac{15}{16}\right)\) |
\(\chi_{68}(33,\cdot)\) | 68.b | 2 | no | \(1\) | \(1\) | \(-1\) | \(-1\) | \(-1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(-1\) |
\(\chi_{68}(35,\cdot)\) | 68.c | 2 | no | \(-1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(-1\) |
\(\chi_{68}(37,\cdot)\) | 68.j | 16 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(i\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(-i\) | \(e\left(\frac{15}{16}\right)\) |
\(\chi_{68}(39,\cdot)\) | 68.i | 16 | yes | \(1\) | \(1\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(i\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(-i\) | \(e\left(\frac{3}{16}\right)\) |
\(\chi_{68}(41,\cdot)\) | 68.j | 16 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(-i\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(i\) | \(e\left(\frac{5}{16}\right)\) |
\(\chi_{68}(43,\cdot)\) | 68.g | 8 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(i\) | \(e\left(\frac{3}{8}\right)\) | \(-1\) | \(i\) | \(i\) | \(-1\) | \(e\left(\frac{3}{8}\right)\) |
\(\chi_{68}(45,\cdot)\) | 68.j | 16 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(-i\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(i\) | \(e\left(\frac{9}{16}\right)\) |
\(\chi_{68}(47,\cdot)\) | 68.f | 4 | yes | \(-1\) | \(1\) | \(-i\) | \(i\) | \(i\) | \(-1\) | \(i\) | \(1\) | \(1\) | \(1\) | \(1\) | \(i\) |
\(\chi_{68}(49,\cdot)\) | 68.h | 8 | no | \(1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(-i\) | \(e\left(\frac{5}{8}\right)\) | \(-1\) | \(i\) | \(i\) | \(-1\) | \(e\left(\frac{5}{8}\right)\) |
\(\chi_{68}(53,\cdot)\) | 68.h | 8 | no | \(1\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(-i\) | \(e\left(\frac{1}{8}\right)\) | \(-1\) | \(i\) | \(i\) | \(-1\) | \(e\left(\frac{1}{8}\right)\) |
\(\chi_{68}(55,\cdot)\) | 68.f | 4 | yes | \(-1\) | \(1\) | \(i\) | \(-i\) | \(-i\) | \(-1\) | \(-i\) | \(1\) | \(1\) | \(1\) | \(1\) | \(-i\) |
\(\chi_{68}(57,\cdot)\) | 68.j | 16 | no | \(-1\) | \(1\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(-i\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(i\) | \(e\left(\frac{1}{16}\right)\) |
\(\chi_{68}(59,\cdot)\) | 68.g | 8 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(i\) | \(e\left(\frac{7}{8}\right)\) | \(-1\) | \(i\) | \(i\) | \(-1\) | \(e\left(\frac{7}{8}\right)\) |
\(\chi_{68}(61,\cdot)\) | 68.j | 16 | no | \(-1\) | \(1\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(-i\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(i\) | \(e\left(\frac{13}{16}\right)\) |
\(\chi_{68}(63,\cdot)\) | 68.i | 16 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(i\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(-i\) | \(e\left(\frac{11}{16}\right)\) |
\(\chi_{68}(65,\cdot)\) | 68.j | 16 | no | \(-1\) | \(1\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(i\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(-i\) | \(e\left(\frac{7}{16}\right)\) |
\(\chi_{68}(67,\cdot)\) | 68.d | 2 | yes | \(-1\) | \(1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(1\) |