# Properties

 Label 675.r Modulus $675$ Conductor $225$ Order $15$ Real no Primitive no Minimal no Parity even

# Related objects

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(675, base_ring=CyclotomicField(30))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([20,18]))

sage: chi.galois_orbit()

pari: [g,chi] = znchar(Mod(46,675))

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Basic properties

 Modulus: $$675$$ Conductor: $$225$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$15$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from 225.q sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: no Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Related number fields

 Field of values: $$\Q(\zeta_{15})$$ Fixed field: 15.15.207828545629978179931640625.1

## Characters in Galois orbit

Character $$-1$$ $$1$$ $$2$$ $$4$$ $$7$$ $$8$$ $$11$$ $$13$$ $$14$$ $$16$$ $$17$$ $$19$$
$$\chi_{675}(46,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{4}{15}\right)$$ $$e\left(\frac{8}{15}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{4}{15}\right)$$ $$e\left(\frac{11}{15}\right)$$ $$e\left(\frac{14}{15}\right)$$ $$e\left(\frac{1}{15}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{4}{5}\right)$$
$$\chi_{675}(91,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{8}{15}\right)$$ $$e\left(\frac{1}{15}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{8}{15}\right)$$ $$e\left(\frac{7}{15}\right)$$ $$e\left(\frac{13}{15}\right)$$ $$e\left(\frac{2}{15}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{3}{5}\right)$$
$$\chi_{675}(181,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{1}{15}\right)$$ $$e\left(\frac{2}{15}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{1}{15}\right)$$ $$e\left(\frac{14}{15}\right)$$ $$e\left(\frac{11}{15}\right)$$ $$e\left(\frac{4}{15}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{1}{5}\right)$$
$$\chi_{675}(316,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{13}{15}\right)$$ $$e\left(\frac{11}{15}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{13}{15}\right)$$ $$e\left(\frac{2}{15}\right)$$ $$e\left(\frac{8}{15}\right)$$ $$e\left(\frac{7}{15}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{3}{5}\right)$$
$$\chi_{675}(361,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{2}{15}\right)$$ $$e\left(\frac{4}{15}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{2}{15}\right)$$ $$e\left(\frac{13}{15}\right)$$ $$e\left(\frac{7}{15}\right)$$ $$e\left(\frac{8}{15}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{2}{5}\right)$$
$$\chi_{675}(496,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{14}{15}\right)$$ $$e\left(\frac{13}{15}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{14}{15}\right)$$ $$e\left(\frac{1}{15}\right)$$ $$e\left(\frac{4}{15}\right)$$ $$e\left(\frac{11}{15}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{4}{5}\right)$$
$$\chi_{675}(586,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{7}{15}\right)$$ $$e\left(\frac{14}{15}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{7}{15}\right)$$ $$e\left(\frac{8}{15}\right)$$ $$e\left(\frac{2}{15}\right)$$ $$e\left(\frac{13}{15}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{2}{5}\right)$$
$$\chi_{675}(631,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{11}{15}\right)$$ $$e\left(\frac{7}{15}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{11}{15}\right)$$ $$e\left(\frac{4}{15}\right)$$ $$e\left(\frac{1}{15}\right)$$ $$e\left(\frac{14}{15}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{1}{5}\right)$$