Properties

Label 675.l
Modulus $675$
Conductor $27$
Order $9$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([14,0]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(76,675))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(675\)
Conductor: \(27\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(9\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 27.e
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: \(\Q(\zeta_{27})^+\)

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(11\) \(13\) \(14\) \(16\) \(17\) \(19\)
\(\chi_{675}(76,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{675}(151,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{675}(301,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{675}(376,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{675}(526,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{675}(601,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)