# Properties

 Label 666.bs Modulus $666$ Conductor $111$ Order $36$ Real no Primitive no Minimal yes Parity even

# Related objects

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(666, base_ring=CyclotomicField(36))

M = H._module

chi = DirichletCharacter(H, M([18,7]))

chi.galois_orbit()

[g,chi] = znchar(Mod(17,666))

order = charorder(g,chi)

[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Basic properties

 Modulus: $$666$$ Conductor: $$111$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$36$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from 111.q sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Related number fields

 Field of values: $$\Q(\zeta_{36})$$ Fixed field: $$\Q(\zeta_{111})^+$$

## Characters in Galois orbit

Character $$-1$$ $$1$$ $$5$$ $$7$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$25$$ $$29$$ $$31$$
$$\chi_{666}(17,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{35}{36}\right)$$ $$e\left(\frac{2}{9}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{5}{36}\right)$$ $$e\left(\frac{31}{36}\right)$$ $$e\left(\frac{29}{36}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{17}{18}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$-i$$
$$\chi_{666}(35,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{23}{36}\right)$$ $$e\left(\frac{8}{9}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{29}{36}\right)$$ $$e\left(\frac{7}{36}\right)$$ $$e\left(\frac{17}{36}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{5}{18}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$-i$$
$$\chi_{666}(89,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{29}{36}\right)$$ $$e\left(\frac{5}{9}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{35}{36}\right)$$ $$e\left(\frac{1}{36}\right)$$ $$e\left(\frac{23}{36}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{11}{18}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$i$$
$$\chi_{666}(143,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{25}{36}\right)$$ $$e\left(\frac{4}{9}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{19}{36}\right)$$ $$e\left(\frac{17}{36}\right)$$ $$e\left(\frac{31}{36}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{7}{18}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$i$$
$$\chi_{666}(161,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{19}{36}\right)$$ $$e\left(\frac{7}{9}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{13}{36}\right)$$ $$e\left(\frac{23}{36}\right)$$ $$e\left(\frac{25}{36}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{18}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$-i$$
$$\chi_{666}(431,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{1}{36}\right)$$ $$e\left(\frac{7}{9}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{31}{36}\right)$$ $$e\left(\frac{5}{36}\right)$$ $$e\left(\frac{7}{36}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{1}{18}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$i$$
$$\chi_{666}(449,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{7}{36}\right)$$ $$e\left(\frac{4}{9}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{36}\right)$$ $$e\left(\frac{35}{36}\right)$$ $$e\left(\frac{13}{36}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{7}{18}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$-i$$
$$\chi_{666}(503,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{11}{36}\right)$$ $$e\left(\frac{5}{9}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{17}{36}\right)$$ $$e\left(\frac{19}{36}\right)$$ $$e\left(\frac{5}{36}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{11}{18}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$-i$$
$$\chi_{666}(557,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{5}{36}\right)$$ $$e\left(\frac{8}{9}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{11}{36}\right)$$ $$e\left(\frac{25}{36}\right)$$ $$e\left(\frac{35}{36}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{5}{18}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$i$$
$$\chi_{666}(575,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{17}{36}\right)$$ $$e\left(\frac{2}{9}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{23}{36}\right)$$ $$e\left(\frac{13}{36}\right)$$ $$e\left(\frac{11}{36}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{17}{18}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$i$$
$$\chi_{666}(611,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{31}{36}\right)$$ $$e\left(\frac{1}{9}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{25}{36}\right)$$ $$e\left(\frac{11}{36}\right)$$ $$e\left(\frac{1}{36}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{13}{18}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$-i$$
$$\chi_{666}(647,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{13}{36}\right)$$ $$e\left(\frac{1}{9}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{7}{36}\right)$$ $$e\left(\frac{29}{36}\right)$$ $$e\left(\frac{19}{36}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{13}{18}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$i$$