sage: H = DirichletGroup(666)
pari: g = idealstar(,666,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 216 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{6}\times C_{36}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{666}(371,\cdot)$, $\chi_{666}(631,\cdot)$ |
First 32 of 216 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{666}(1,\cdot)\) | 666.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{666}(5,\cdot)\) | 666.bv | 36 | no | \(1\) | \(1\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(1\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(-i\) | \(e\left(\frac{13}{18}\right)\) | \(i\) | \(e\left(\frac{5}{12}\right)\) |
\(\chi_{666}(7,\cdot)\) | 666.w | 9 | no | \(1\) | \(1\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{666}(11,\cdot)\) | 666.v | 6 | no | \(-1\) | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{666}(13,\cdot)\) | 666.bq | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(-1\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(i\) | \(e\left(\frac{7}{18}\right)\) | \(-i\) | \(e\left(\frac{5}{12}\right)\) |
\(\chi_{666}(17,\cdot)\) | 666.bs | 36 | no | \(1\) | \(1\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(-i\) |
\(\chi_{666}(19,\cdot)\) | 666.bt | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(-i\) |
\(\chi_{666}(23,\cdot)\) | 666.ba | 12 | no | \(1\) | \(1\) | \(-i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(i\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(-1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) |
\(\chi_{666}(25,\cdot)\) | 666.bp | 18 | no | \(1\) | \(1\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(1\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(-1\) | \(e\left(\frac{4}{9}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{666}(29,\cdot)\) | 666.ba | 12 | no | \(1\) | \(1\) | \(i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-i\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(-1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{666}(31,\cdot)\) | 666.bd | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(-i\) | \(-i\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) |
\(\chi_{666}(35,\cdot)\) | 666.bs | 36 | no | \(1\) | \(1\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(-i\) |
\(\chi_{666}(41,\cdot)\) | 666.bi | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(-1\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(1\) | \(e\left(\frac{8}{9}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{666}(43,\cdot)\) | 666.bd | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(i\) | \(i\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) |
\(\chi_{666}(47,\cdot)\) | 666.u | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{666}(49,\cdot)\) | 666.w | 9 | no | \(1\) | \(1\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{666}(53,\cdot)\) | 666.bo | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) |
\(\chi_{666}(55,\cdot)\) | 666.bt | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(i\) |
\(\chi_{666}(59,\cdot)\) | 666.br | 36 | no | \(1\) | \(1\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) |
\(\chi_{666}(61,\cdot)\) | 666.bu | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{666}(65,\cdot)\) | 666.bi | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(-1\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(1\) | \(e\left(\frac{1}{9}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{666}(67,\cdot)\) | 666.bp | 18 | no | \(1\) | \(1\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(1\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(-1\) | \(e\left(\frac{2}{9}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{666}(71,\cdot)\) | 666.bo | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) |
\(\chi_{666}(73,\cdot)\) | 666.c | 2 | no | \(1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(-1\) | \(-1\) | \(1\) | \(-1\) | \(-1\) |
\(\chi_{666}(77,\cdot)\) | 666.bi | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(-1\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(1\) | \(e\left(\frac{5}{9}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{666}(79,\cdot)\) | 666.bu | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) |
\(\chi_{666}(83,\cdot)\) | 666.bh | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(-1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(-1\) | \(e\left(\frac{1}{9}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{666}(85,\cdot)\) | 666.t | 6 | no | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{666}(89,\cdot)\) | 666.bs | 36 | no | \(1\) | \(1\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(i\) |
\(\chi_{666}(91,\cdot)\) | 666.bt | 36 | no | \(-1\) | \(1\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-i\) |
\(\chi_{666}(95,\cdot)\) | 666.bm | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{666}(97,\cdot)\) | 666.bg | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) |