sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(664, base_ring=CyclotomicField(82))
M = H._module
chi = DirichletCharacter(H, M([41,41,55]))
pari:[g,chi] = znchar(Mod(299,664))
| Modulus: | \(664\) | |
| Conductor: | \(664\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(82\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{664}(19,\cdot)\)
\(\chi_{664}(35,\cdot)\)
\(\chi_{664}(43,\cdot)\)
\(\chi_{664}(67,\cdot)\)
\(\chi_{664}(91,\cdot)\)
\(\chi_{664}(107,\cdot)\)
\(\chi_{664}(115,\cdot)\)
\(\chi_{664}(139,\cdot)\)
\(\chi_{664}(155,\cdot)\)
\(\chi_{664}(163,\cdot)\)
\(\chi_{664}(171,\cdot)\)
\(\chi_{664}(179,\cdot)\)
\(\chi_{664}(211,\cdot)\)
\(\chi_{664}(219,\cdot)\)
\(\chi_{664}(251,\cdot)\)
\(\chi_{664}(267,\cdot)\)
\(\chi_{664}(283,\cdot)\)
\(\chi_{664}(291,\cdot)\)
\(\chi_{664}(299,\cdot)\)
\(\chi_{664}(307,\cdot)\)
\(\chi_{664}(315,\cdot)\)
\(\chi_{664}(323,\cdot)\)
\(\chi_{664}(347,\cdot)\)
\(\chi_{664}(371,\cdot)\)
\(\chi_{664}(379,\cdot)\)
\(\chi_{664}(387,\cdot)\)
\(\chi_{664}(403,\cdot)\)
\(\chi_{664}(411,\cdot)\)
\(\chi_{664}(435,\cdot)\)
\(\chi_{664}(467,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((167,333,417)\) → \((-1,-1,e\left(\frac{55}{82}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
| \( \chi_{ 664 }(299, a) \) |
\(1\) | \(1\) | \(e\left(\frac{12}{41}\right)\) | \(e\left(\frac{25}{41}\right)\) | \(e\left(\frac{71}{82}\right)\) | \(e\left(\frac{24}{41}\right)\) | \(e\left(\frac{4}{41}\right)\) | \(e\left(\frac{6}{41}\right)\) | \(e\left(\frac{37}{41}\right)\) | \(e\left(\frac{23}{41}\right)\) | \(e\left(\frac{43}{82}\right)\) | \(e\left(\frac{13}{82}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)