Properties

Label 664.139
Modulus $664$
Conductor $664$
Order $82$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(664, base_ring=CyclotomicField(82)) M = H._module chi = DirichletCharacter(H, M([41,41,11]))
 
Copy content pari:[g,chi] = znchar(Mod(139,664))
 

Basic properties

Modulus: \(664\)
Conductor: \(664\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(82\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 664.j

\(\chi_{664}(19,\cdot)\) \(\chi_{664}(35,\cdot)\) \(\chi_{664}(43,\cdot)\) \(\chi_{664}(67,\cdot)\) \(\chi_{664}(91,\cdot)\) \(\chi_{664}(107,\cdot)\) \(\chi_{664}(115,\cdot)\) \(\chi_{664}(139,\cdot)\) \(\chi_{664}(155,\cdot)\) \(\chi_{664}(163,\cdot)\) \(\chi_{664}(171,\cdot)\) \(\chi_{664}(179,\cdot)\) \(\chi_{664}(211,\cdot)\) \(\chi_{664}(219,\cdot)\) \(\chi_{664}(251,\cdot)\) \(\chi_{664}(267,\cdot)\) \(\chi_{664}(283,\cdot)\) \(\chi_{664}(291,\cdot)\) \(\chi_{664}(299,\cdot)\) \(\chi_{664}(307,\cdot)\) \(\chi_{664}(315,\cdot)\) \(\chi_{664}(323,\cdot)\) \(\chi_{664}(347,\cdot)\) \(\chi_{664}(371,\cdot)\) \(\chi_{664}(379,\cdot)\) \(\chi_{664}(387,\cdot)\) \(\chi_{664}(403,\cdot)\) \(\chi_{664}(411,\cdot)\) \(\chi_{664}(435,\cdot)\) \(\chi_{664}(467,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{41})$
Fixed field: Number field defined by a degree 82 polynomial

Values on generators

\((167,333,417)\) → \((-1,-1,e\left(\frac{11}{82}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 664 }(139, a) \) \(1\)\(1\)\(e\left(\frac{27}{41}\right)\)\(e\left(\frac{5}{41}\right)\)\(e\left(\frac{47}{82}\right)\)\(e\left(\frac{13}{41}\right)\)\(e\left(\frac{9}{41}\right)\)\(e\left(\frac{34}{41}\right)\)\(e\left(\frac{32}{41}\right)\)\(e\left(\frac{21}{41}\right)\)\(e\left(\frac{25}{82}\right)\)\(e\left(\frac{19}{82}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 664 }(139,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 664 }(139,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 664 }(139,·),\chi_{ 664 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 664 }(139,·)) \;\) at \(\; a,b = \) e.g. 1,2