Properties

Modulus $663$
Structure \(C_{2}\times C_{4}\times C_{48}\)
Order $384$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(663)
 
pari: g = idealstar(,663,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 384
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{2}\times C_{4}\times C_{48}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{663}(443,\cdot)$, $\chi_{663}(613,\cdot)$, $\chi_{663}(547,\cdot)$

First 32 of 384 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(14\) \(16\) \(19\)
\(\chi_{663}(1,\cdot)\) 663.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{663}(2,\cdot)\) 663.ck 24 yes \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{13}{24}\right)\) \(-1\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{663}(4,\cdot)\) 663.bk 12 no \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(i\) \(e\left(\frac{1}{12}\right)\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(-i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{663}(5,\cdot)\) 663.bz 16 yes \(-1\) \(1\) \(e\left(\frac{5}{8}\right)\) \(i\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(-1\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{663}(7,\cdot)\) 663.cm 48 no \(1\) \(1\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{24}\right)\)
\(\chi_{663}(8,\cdot)\) 663.bd 8 yes \(1\) \(1\) \(-1\) \(1\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(-1\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(1\) \(1\)
\(\chi_{663}(10,\cdot)\) 663.cn 48 no \(-1\) \(1\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{19}{24}\right)\)
\(\chi_{663}(11,\cdot)\) 663.ct 48 yes \(-1\) \(1\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{24}\right)\)
\(\chi_{663}(14,\cdot)\) 663.by 16 no \(1\) \(1\) \(e\left(\frac{3}{8}\right)\) \(-i\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(-1\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{663}(16,\cdot)\) 663.w 6 no \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{663}(19,\cdot)\) 663.ce 24 no \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{5}{24}\right)\) \(1\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{663}(20,\cdot)\) 663.cq 48 yes \(-1\) \(1\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{24}\right)\)
\(\chi_{663}(22,\cdot)\) 663.co 48 no \(-1\) \(1\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{24}\right)\)
\(\chi_{663}(23,\cdot)\) 663.cs 48 yes \(1\) \(1\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{24}\right)\)
\(\chi_{663}(25,\cdot)\) 663.bh 8 no \(1\) \(1\) \(i\) \(-1\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(-i\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(1\) \(i\)
\(\chi_{663}(28,\cdot)\) 663.cp 48 no \(1\) \(1\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{24}\right)\)
\(\chi_{663}(29,\cdot)\) 663.cr 48 yes \(1\) \(1\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{24}\right)\)
\(\chi_{663}(31,\cdot)\) 663.ca 16 no \(1\) \(1\) \(e\left(\frac{5}{8}\right)\) \(i\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(-1\) \(e\left(\frac{5}{8}\right)\)
\(\chi_{663}(32,\cdot)\) 663.ck 24 yes \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{17}{24}\right)\) \(-1\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{663}(35,\cdot)\) 663.y 6 no \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{663}(37,\cdot)\) 663.cp 48 no \(1\) \(1\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{5}{48}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{19}{24}\right)\)
\(\chi_{663}(38,\cdot)\) 663.k 4 yes \(-1\) \(1\) \(-1\) \(1\) \(-i\) \(-i\) \(-1\) \(i\) \(i\) \(i\) \(1\) \(1\)
\(\chi_{663}(40,\cdot)\) 663.cb 16 no \(-1\) \(1\) \(e\left(\frac{1}{8}\right)\) \(i\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(-1\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{663}(41,\cdot)\) 663.cq 48 yes \(-1\) \(1\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{24}\right)\)
\(\chi_{663}(43,\cdot)\) 663.ch 24 no \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{5}{24}\right)\) \(-i\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{663}(44,\cdot)\) 663.bw 16 yes \(-1\) \(1\) \(e\left(\frac{7}{8}\right)\) \(-i\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(-1\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{663}(46,\cdot)\) 663.cp 48 no \(1\) \(1\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{5}{48}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{23}{24}\right)\)
\(\chi_{663}(47,\cdot)\) 663.r 4 yes \(1\) \(1\) \(i\) \(-1\) \(1\) \(-1\) \(-i\) \(i\) \(1\) \(-i\) \(1\) \(-i\)
\(\chi_{663}(49,\cdot)\) 663.ch 24 no \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{7}{24}\right)\) \(i\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{663}(50,\cdot)\) 663.bp 12 yes \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(i\) \(e\left(\frac{11}{12}\right)\) \(i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{663}(53,\cdot)\) 663.bf 8 no \(-1\) \(1\) \(-i\) \(-1\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(i\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(1\) \(i\)
\(\chi_{663}(55,\cdot)\) 663.bv 12 no \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(-i\) \(e\left(\frac{11}{12}\right)\) \(-1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(-i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)
Click here to search among the remaining 352 characters.