sage: H = DirichletGroup(663)
pari: g = idealstar(,663,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 384 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{4}\times C_{48}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{663}(443,\cdot)$, $\chi_{663}(613,\cdot)$, $\chi_{663}(547,\cdot)$ |
First 32 of 384 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(14\) | \(16\) | \(19\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{663}(1,\cdot)\) | 663.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{663}(2,\cdot)\) | 663.ck | 24 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(-1\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{663}(4,\cdot)\) | 663.bk | 12 | no | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(i\) | \(e\left(\frac{1}{12}\right)\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(-i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{663}(5,\cdot)\) | 663.bz | 16 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(i\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(-1\) | \(e\left(\frac{1}{8}\right)\) |
\(\chi_{663}(7,\cdot)\) | 663.cm | 48 | no | \(1\) | \(1\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{24}\right)\) |
\(\chi_{663}(8,\cdot)\) | 663.bd | 8 | yes | \(1\) | \(1\) | \(-1\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(-1\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(1\) | \(1\) |
\(\chi_{663}(10,\cdot)\) | 663.cn | 48 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{19}{24}\right)\) |
\(\chi_{663}(11,\cdot)\) | 663.ct | 48 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{24}\right)\) |
\(\chi_{663}(14,\cdot)\) | 663.by | 16 | no | \(1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(-i\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(-1\) | \(e\left(\frac{7}{8}\right)\) |
\(\chi_{663}(16,\cdot)\) | 663.w | 6 | no | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{663}(19,\cdot)\) | 663.ce | 24 | no | \(-1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(1\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{663}(20,\cdot)\) | 663.cq | 48 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{24}\right)\) |
\(\chi_{663}(22,\cdot)\) | 663.co | 48 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{17}{24}\right)\) |
\(\chi_{663}(23,\cdot)\) | 663.cs | 48 | yes | \(1\) | \(1\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{24}\right)\) |
\(\chi_{663}(25,\cdot)\) | 663.bh | 8 | no | \(1\) | \(1\) | \(i\) | \(-1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(-i\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(1\) | \(i\) |
\(\chi_{663}(28,\cdot)\) | 663.cp | 48 | no | \(1\) | \(1\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{13}{24}\right)\) |
\(\chi_{663}(29,\cdot)\) | 663.cr | 48 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{24}\right)\) |
\(\chi_{663}(31,\cdot)\) | 663.ca | 16 | no | \(1\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(i\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(-1\) | \(e\left(\frac{5}{8}\right)\) |
\(\chi_{663}(32,\cdot)\) | 663.ck | 24 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(-1\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{663}(35,\cdot)\) | 663.y | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{663}(37,\cdot)\) | 663.cp | 48 | no | \(1\) | \(1\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{19}{24}\right)\) |
\(\chi_{663}(38,\cdot)\) | 663.k | 4 | yes | \(-1\) | \(1\) | \(-1\) | \(1\) | \(-i\) | \(-i\) | \(-1\) | \(i\) | \(i\) | \(i\) | \(1\) | \(1\) |
\(\chi_{663}(40,\cdot)\) | 663.cb | 16 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(i\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(-1\) | \(e\left(\frac{1}{8}\right)\) |
\(\chi_{663}(41,\cdot)\) | 663.cq | 48 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{24}\right)\) |
\(\chi_{663}(43,\cdot)\) | 663.ch | 24 | no | \(1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(-i\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{663}(44,\cdot)\) | 663.bw | 16 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(-i\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(-1\) | \(e\left(\frac{3}{8}\right)\) |
\(\chi_{663}(46,\cdot)\) | 663.cp | 48 | no | \(1\) | \(1\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{23}{24}\right)\) |
\(\chi_{663}(47,\cdot)\) | 663.r | 4 | yes | \(1\) | \(1\) | \(i\) | \(-1\) | \(1\) | \(-1\) | \(-i\) | \(i\) | \(1\) | \(-i\) | \(1\) | \(-i\) |
\(\chi_{663}(49,\cdot)\) | 663.ch | 24 | no | \(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(i\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) |
\(\chi_{663}(50,\cdot)\) | 663.bp | 12 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(i\) | \(e\left(\frac{11}{12}\right)\) | \(i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) |
\(\chi_{663}(53,\cdot)\) | 663.bf | 8 | no | \(-1\) | \(1\) | \(-i\) | \(-1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(i\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(1\) | \(i\) |
\(\chi_{663}(55,\cdot)\) | 663.bv | 12 | no | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-i\) | \(e\left(\frac{11}{12}\right)\) | \(-1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) |