Properties

Label 648.25
Modulus $648$
Conductor $81$
Order $27$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(648, base_ring=CyclotomicField(54))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,0,46]))
 
pari: [g,chi] = znchar(Mod(25,648))
 

Basic properties

Modulus: \(648\)
Conductor: \(81\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(27\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{81}(25,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 648.y

\(\chi_{648}(25,\cdot)\) \(\chi_{648}(49,\cdot)\) \(\chi_{648}(97,\cdot)\) \(\chi_{648}(121,\cdot)\) \(\chi_{648}(169,\cdot)\) \(\chi_{648}(193,\cdot)\) \(\chi_{648}(241,\cdot)\) \(\chi_{648}(265,\cdot)\) \(\chi_{648}(313,\cdot)\) \(\chi_{648}(337,\cdot)\) \(\chi_{648}(385,\cdot)\) \(\chi_{648}(409,\cdot)\) \(\chi_{648}(457,\cdot)\) \(\chi_{648}(481,\cdot)\) \(\chi_{648}(529,\cdot)\) \(\chi_{648}(553,\cdot)\) \(\chi_{648}(601,\cdot)\) \(\chi_{648}(625,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((487,325,569)\) → \((1,1,e\left(\frac{23}{27}\right))\)

Values

\(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\(1\)\(1\)\(e\left(\frac{16}{27}\right)\)\(e\left(\frac{17}{27}\right)\)\(e\left(\frac{2}{27}\right)\)\(e\left(\frac{22}{27}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{10}{27}\right)\)\(e\left(\frac{5}{27}\right)\)\(e\left(\frac{14}{27}\right)\)\(e\left(\frac{1}{27}\right)\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\zeta_{27})\)
Fixed field: \(\Q(\zeta_{81})^+\)

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 648 }(25,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{648}(25,\cdot)) = \sum_{r\in \Z/648\Z} \chi_{648}(25,r) e\left(\frac{r}{324}\right) = 0.0 \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 648 }(25,·),\chi_{ 648 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{648}(25,\cdot),\chi_{648}(1,\cdot)) = \sum_{r\in \Z/648\Z} \chi_{648}(25,r) \chi_{648}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 648 }(25,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{648}(25,·)) = \sum_{r \in \Z/648\Z} \chi_{648}(25,r) e\left(\frac{1 r + 2 r^{-1}}{648}\right) = 0.0 \)