Properties

Conductor 64
Order 16
Real No
Primitive Yes
Parity Odd
Orbit Label 64.j

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
 
sage: H = DirichletGroup_conrey(64)
 
sage: chi = H[19]
 
pari: [g,chi] = znchar(Mod(19,64))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Conductor = 64
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 16
Real = No
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = Yes
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = Odd
Orbit label = 64.j
Orbit index = 10

Galois orbit

sage: chi.sage_character().galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{64}(3,\cdot)\) \(\chi_{64}(11,\cdot)\) \(\chi_{64}(19,\cdot)\) \(\chi_{64}(27,\cdot)\) \(\chi_{64}(35,\cdot)\) \(\chi_{64}(43,\cdot)\) \(\chi_{64}(51,\cdot)\) \(\chi_{64}(59,\cdot)\)

Values on generators

\((63,5)\) → \((-1,e\left(\frac{7}{16}\right))\)

Values

-113579111315171921
\(-1\)\(1\)\(e\left(\frac{13}{16}\right)\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{11}{16}\right)\)\(e\left(\frac{9}{16}\right)\)\(i\)\(i\)\(e\left(\frac{9}{16}\right)\)\(e\left(\frac{11}{16}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{16})\)

Gauss sum

sage: chi.sage_character().gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 64 }(19,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{64}(19,\cdot)) = \sum_{r\in \Z/64\Z} \chi_{64}(19,r) e\left(\frac{r}{32}\right) = 0.0 \)

Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
 
\( J(\chi_{ 64 }(19,·),\chi_{ 64 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{64}(19,\cdot),\chi_{64}(1,\cdot)) = \sum_{r\in \Z/64\Z} \chi_{64}(19,r) \chi_{64}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 64 }(19,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{64}(19,·)) = \sum_{r \in \Z/64\Z} \chi_{64}(19,r) e\left(\frac{1 r + 2 r^{-1}}{64}\right) = 7.0553701148+-3.7711738946i \)