Properties

Label 6336.ed
Modulus $6336$
Conductor $792$
Order $30$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6336, base_ring=CyclotomicField(30)) M = H._module chi = DirichletCharacter(H, M([0,15,25,27])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(545,6336)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(6336\)
Conductor: \(792\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(30\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 792.ch
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: 30.30.1362726704303137911258873132661821647276632612392121121265156096.1

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(35\)
\(\chi_{6336}(545,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{9}{10}\right)\)
\(\chi_{6336}(2081,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{10}\right)\)
\(\chi_{6336}(2273,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{7}{10}\right)\)
\(\chi_{6336}(2657,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{9}{10}\right)\)
\(\chi_{6336}(4001,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{3}{10}\right)\)
\(\chi_{6336}(4385,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{7}{10}\right)\)
\(\chi_{6336}(6113,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{3}{10}\right)\)
\(\chi_{6336}(6305,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{1}{10}\right)\)