Properties

Label 6300.hn
Modulus $6300$
Conductor $900$
Order $30$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6300, base_ring=CyclotomicField(30)) M = H._module chi = DirichletCharacter(H, M([15,25,6,0])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(491,6300)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(6300\)
Conductor: \(900\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(30\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 900.br
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 30 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(11\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{6300}(491,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{6300}(911,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{6300}(2171,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{6300}(3011,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{6300}(3431,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{6300}(4271,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{6300}(4691,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{6300}(5531,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{5}{6}\right)\)