# Properties

 Label 63.22 Modulus $63$ Conductor $9$ Order $3$ Real no Primitive no Minimal yes Parity even

# Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(63)

sage: M = H._module

sage: chi = DirichletCharacter(H, M([1,0]))

pari: [g,chi] = znchar(Mod(22,63))

## Basic properties

 Modulus: $$63$$ Conductor: $$9$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$3$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{9}(4,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 63.f

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(29,10)$$ → $$(e\left(\frac{1}{3}\right),1)$$

## Values

 $$-1$$ $$1$$ $$2$$ $$4$$ $$5$$ $$8$$ $$10$$ $$11$$ $$13$$ $$16$$ $$17$$ $$19$$ $$1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$1$$
 value at e.g. 2

## Related number fields

 Field of values: $$\Q(\sqrt{-3})$$ Fixed field: $$\Q(\zeta_{9})^+$$

## Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 63 }(22,·) )\;$$ at $$\;a =$$ e.g. 2
$$\displaystyle \tau_{2}(\chi_{63}(22,\cdot)) = \sum_{r\in \Z/63\Z} \chi_{63}(22,r) e\left(\frac{2r}{63}\right) = -2.2981333294+-1.9283628291i$$

## Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 63 }(22,·),\chi_{ 63 }(n,·)) \;$$ for $$\; n =$$ e.g. 1
$$\displaystyle J(\chi_{63}(22,\cdot),\chi_{63}(1,\cdot)) = \sum_{r\in \Z/63\Z} \chi_{63}(22,r) \chi_{63}(1,1-r) = 0$$

## Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 63 }(22,·)) \;$$ at $$\; a,b =$$ e.g. 1,2
$$\displaystyle K(1,2,\chi_{63}(22,·)) = \sum_{r \in \Z/63\Z} \chi_{63}(22,r) e\left(\frac{1 r + 2 r^{-1}}{63}\right) = 4.0380322074+6.9940769459i$$