sage: H = DirichletGroup(624)
pari: g = idealstar(,624,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 192 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{4}\times C_{12}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{624}(79,\cdot)$, $\chi_{624}(469,\cdot)$, $\chi_{624}(209,\cdot)$, $\chi_{624}(145,\cdot)$ |
First 32 of 192 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{624}(1,\cdot)\) | 624.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{624}(5,\cdot)\) | 624.u | 4 | yes | \(1\) | \(1\) | \(-1\) | \(-i\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(i\) | \(-i\) | \(i\) |
\(\chi_{624}(7,\cdot)\) | 624.cr | 12 | no | \(1\) | \(1\) | \(-i\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{624}(11,\cdot)\) | 624.cy | 12 | yes | \(-1\) | \(1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(-i\) | \(e\left(\frac{5}{12}\right)\) |
\(\chi_{624}(17,\cdot)\) | 624.cb | 6 | no | \(-1\) | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{624}(19,\cdot)\) | 624.ch | 12 | no | \(1\) | \(1\) | \(-1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(i\) | \(e\left(\frac{1}{12}\right)\) |
\(\chi_{624}(23,\cdot)\) | 624.bq | 6 | no | \(1\) | \(1\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{624}(25,\cdot)\) | 624.m | 2 | no | \(1\) | \(1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(-1\) |
\(\chi_{624}(29,\cdot)\) | 624.cw | 12 | yes | \(-1\) | \(1\) | \(i\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{12}\right)\) | \(1\) | \(e\left(\frac{5}{12}\right)\) |
\(\chi_{624}(31,\cdot)\) | 624.bc | 4 | no | \(1\) | \(1\) | \(-i\) | \(-i\) | \(-i\) | \(-1\) | \(i\) | \(1\) | \(-1\) | \(1\) | \(i\) | \(-1\) |
\(\chi_{624}(35,\cdot)\) | 624.cl | 12 | yes | \(1\) | \(1\) | \(i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{5}{12}\right)\) | \(-1\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{624}(37,\cdot)\) | 624.cf | 12 | no | \(-1\) | \(1\) | \(-1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(i\) | \(e\left(\frac{5}{12}\right)\) |
\(\chi_{624}(41,\cdot)\) | 624.cm | 12 | no | \(1\) | \(1\) | \(-i\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(-i\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{624}(43,\cdot)\) | 624.cu | 12 | no | \(-1\) | \(1\) | \(-i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{12}\right)\) | \(1\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{624}(47,\cdot)\) | 624.bd | 4 | no | \(-1\) | \(1\) | \(-i\) | \(i\) | \(-i\) | \(1\) | \(-i\) | \(-1\) | \(-1\) | \(-1\) | \(-i\) | \(1\) |
\(\chi_{624}(49,\cdot)\) | 624.bv | 6 | no | \(1\) | \(1\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{624}(53,\cdot)\) | 624.w | 4 | no | \(-1\) | \(1\) | \(-i\) | \(-1\) | \(-i\) | \(-1\) | \(-i\) | \(1\) | \(-1\) | \(i\) | \(1\) | \(i\) |
\(\chi_{624}(55,\cdot)\) | 624.bt | 6 | no | \(-1\) | \(1\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{624}(59,\cdot)\) | 624.cy | 12 | yes | \(-1\) | \(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(-i\) | \(e\left(\frac{1}{12}\right)\) |
\(\chi_{624}(61,\cdot)\) | 624.cv | 12 | no | \(1\) | \(1\) | \(-i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{11}{12}\right)\) | \(1\) | \(e\left(\frac{7}{12}\right)\) |
\(\chi_{624}(67,\cdot)\) | 624.ch | 12 | no | \(1\) | \(1\) | \(-1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(i\) | \(e\left(\frac{5}{12}\right)\) |
\(\chi_{624}(71,\cdot)\) | 624.co | 12 | no | \(-1\) | \(1\) | \(-i\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(i\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{624}(73,\cdot)\) | 624.z | 4 | no | \(-1\) | \(1\) | \(-i\) | \(-i\) | \(i\) | \(-1\) | \(-i\) | \(-1\) | \(-1\) | \(-1\) | \(i\) | \(-1\) |
\(\chi_{624}(77,\cdot)\) | 624.bi | 4 | yes | \(-1\) | \(1\) | \(-i\) | \(1\) | \(-i\) | \(-1\) | \(-i\) | \(1\) | \(-1\) | \(-i\) | \(-1\) | \(-i\) |
\(\chi_{624}(79,\cdot)\) | 624.k | 2 | no | \(-1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(1\) | \(-1\) | \(-1\) |
\(\chi_{624}(83,\cdot)\) | 624.bo | 4 | yes | \(-1\) | \(1\) | \(1\) | \(i\) | \(1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(-i\) | \(i\) | \(i\) |
\(\chi_{624}(85,\cdot)\) | 624.cf | 12 | no | \(-1\) | \(1\) | \(-1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(i\) | \(e\left(\frac{1}{12}\right)\) |
\(\chi_{624}(89,\cdot)\) | 624.cm | 12 | no | \(1\) | \(1\) | \(i\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(i\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{624}(95,\cdot)\) | 624.bz | 6 | no | \(1\) | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{624}(97,\cdot)\) | 624.cs | 12 | no | \(-1\) | \(1\) | \(-i\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{624}(101,\cdot)\) | 624.ck | 12 | yes | \(-1\) | \(1\) | \(i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{7}{12}\right)\) | \(-1\) | \(e\left(\frac{11}{12}\right)\) |
\(\chi_{624}(103,\cdot)\) | 624.o | 2 | no | \(-1\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(-1\) | \(1\) | \(1\) |