Properties

Modulus $624$
Structure \(C_{2}\times C_{2}\times C_{4}\times C_{12}\)
Order $192$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(624)
 
pari: g = idealstar(,624,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 192
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{2}\times C_{2}\times C_{4}\times C_{12}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{624}(79,\cdot)$, $\chi_{624}(469,\cdot)$, $\chi_{624}(209,\cdot)$, $\chi_{624}(145,\cdot)$

First 32 of 192 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(5\) \(7\) \(11\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(35\)
\(\chi_{624}(1,\cdot)\) 624.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{624}(5,\cdot)\) 624.u 4 yes \(1\) \(1\) \(-1\) \(-i\) \(1\) \(1\) \(-1\) \(-1\) \(1\) \(i\) \(-i\) \(i\)
\(\chi_{624}(7,\cdot)\) 624.cr 12 no \(1\) \(1\) \(-i\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(-i\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{624}(11,\cdot)\) 624.cy 12 yes \(-1\) \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{7}{12}\right)\) \(-i\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{624}(17,\cdot)\) 624.cb 6 no \(-1\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{624}(19,\cdot)\) 624.ch 12 no \(1\) \(1\) \(-1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{11}{12}\right)\) \(i\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{624}(23,\cdot)\) 624.bq 6 no \(1\) \(1\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{624}(25,\cdot)\) 624.m 2 no \(1\) \(1\) \(1\) \(-1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(-1\) \(-1\) \(-1\)
\(\chi_{624}(29,\cdot)\) 624.cw 12 yes \(-1\) \(1\) \(i\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{12}\right)\) \(1\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{624}(31,\cdot)\) 624.bc 4 no \(1\) \(1\) \(-i\) \(-i\) \(-i\) \(-1\) \(i\) \(1\) \(-1\) \(1\) \(i\) \(-1\)
\(\chi_{624}(35,\cdot)\) 624.cl 12 yes \(1\) \(1\) \(i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{5}{12}\right)\) \(-1\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{624}(37,\cdot)\) 624.cf 12 no \(-1\) \(1\) \(-1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{12}\right)\) \(i\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{624}(41,\cdot)\) 624.cm 12 no \(1\) \(1\) \(-i\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(-i\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{624}(43,\cdot)\) 624.cu 12 no \(-1\) \(1\) \(-i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{5}{12}\right)\) \(1\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{624}(47,\cdot)\) 624.bd 4 no \(-1\) \(1\) \(-i\) \(i\) \(-i\) \(1\) \(-i\) \(-1\) \(-1\) \(-1\) \(-i\) \(1\)
\(\chi_{624}(49,\cdot)\) 624.bv 6 no \(1\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{624}(53,\cdot)\) 624.w 4 no \(-1\) \(1\) \(-i\) \(-1\) \(-i\) \(-1\) \(-i\) \(1\) \(-1\) \(i\) \(1\) \(i\)
\(\chi_{624}(55,\cdot)\) 624.bt 6 no \(-1\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{624}(59,\cdot)\) 624.cy 12 yes \(-1\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{11}{12}\right)\) \(-i\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{624}(61,\cdot)\) 624.cv 12 no \(1\) \(1\) \(-i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{11}{12}\right)\) \(1\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{624}(67,\cdot)\) 624.ch 12 no \(1\) \(1\) \(-1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{7}{12}\right)\) \(i\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{624}(71,\cdot)\) 624.co 12 no \(-1\) \(1\) \(-i\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(i\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{624}(73,\cdot)\) 624.z 4 no \(-1\) \(1\) \(-i\) \(-i\) \(i\) \(-1\) \(-i\) \(-1\) \(-1\) \(-1\) \(i\) \(-1\)
\(\chi_{624}(77,\cdot)\) 624.bi 4 yes \(-1\) \(1\) \(-i\) \(1\) \(-i\) \(-1\) \(-i\) \(1\) \(-1\) \(-i\) \(-1\) \(-i\)
\(\chi_{624}(79,\cdot)\) 624.k 2 no \(-1\) \(1\) \(1\) \(-1\) \(-1\) \(1\) \(-1\) \(-1\) \(1\) \(1\) \(-1\) \(-1\)
\(\chi_{624}(83,\cdot)\) 624.bo 4 yes \(-1\) \(1\) \(1\) \(i\) \(1\) \(1\) \(-1\) \(1\) \(1\) \(-i\) \(i\) \(i\)
\(\chi_{624}(85,\cdot)\) 624.cf 12 no \(-1\) \(1\) \(-1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{5}{12}\right)\) \(i\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{624}(89,\cdot)\) 624.cm 12 no \(1\) \(1\) \(i\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(i\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{624}(95,\cdot)\) 624.bz 6 no \(1\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{624}(97,\cdot)\) 624.cs 12 no \(-1\) \(1\) \(-i\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(-i\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{624}(101,\cdot)\) 624.ck 12 yes \(-1\) \(1\) \(i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{7}{12}\right)\) \(-1\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{624}(103,\cdot)\) 624.o 2 no \(-1\) \(1\) \(1\) \(1\) \(-1\) \(1\) \(-1\) \(-1\) \(1\) \(-1\) \(1\) \(1\)
Click here to search among the remaining 160 characters.