Properties

Label 6223.hv
Modulus $6223$
Conductor $889$
Order $63$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6223, base_ring=CyclotomicField(126)) M = H._module chi = DirichletCharacter(H, M([84,74])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(18,6223)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(6223\)
Conductor: \(889\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(63\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 889.cb
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 63 polynomial

First 31 of 36 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(8\) \(9\) \(10\) \(11\) \(12\)
\(\chi_{6223}(18,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{31}{63}\right)\)
\(\chi_{6223}(30,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{50}{63}\right)\)
\(\chi_{6223}(79,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{8}{63}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{47}{63}\right)\)
\(\chi_{6223}(263,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{40}{63}\right)\)
\(\chi_{6223}(324,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{1}{63}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{62}{63}\right)\)
\(\chi_{6223}(557,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{1}{63}\right)\)
\(\chi_{6223}(606,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{8}{63}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{41}{63}\right)\) \(e\left(\frac{55}{63}\right)\)
\(\chi_{6223}(704,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{46}{63}\right)\)
\(\chi_{6223}(716,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{17}{63}\right)\)
\(\chi_{6223}(900,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{37}{63}\right)\)
\(\chi_{6223}(1010,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{52}{63}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{11}{63}\right)\)
\(\chi_{6223}(1439,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{8}{63}\right)\) \(e\left(\frac{43}{63}\right)\)
\(\chi_{6223}(1733,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{16}{63}\right)\)
\(\chi_{6223}(2076,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{52}{63}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{19}{63}\right)\)
\(\chi_{6223}(2370,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{34}{63}\right)\)
\(\chi_{6223}(2811,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{1}{63}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{4}{63}\right)\)
\(\chi_{6223}(3362,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{41}{63}\right)\)
\(\chi_{6223}(3460,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{41}{63}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{38}{63}\right)\)
\(\chi_{6223}(3644,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{10}{63}\right)\)
\(\chi_{6223}(3754,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{5}{63}\right)\)
\(\chi_{6223}(3803,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{8}{63}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{32}{63}\right)\)
\(\chi_{6223}(3950,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{53}{63}\right)\)
\(\chi_{6223}(3999,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{1}{63}\right)\) \(e\left(\frac{29}{63}\right)\)
\(\chi_{6223}(4085,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{37}{63}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{52}{63}\right)\)
\(\chi_{6223}(4232,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{25}{63}\right)\)
\(\chi_{6223}(4587,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{52}{63}\right)\) \(e\left(\frac{59}{63}\right)\)
\(\chi_{6223}(4685,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{23}{63}\right)\)
\(\chi_{6223}(4734,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{8}{63}\right)\)
\(\chi_{6223}(4771,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{13}{63}\right)\)
\(\chi_{6223}(4930,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{37}{63}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{26}{63}\right)\)
\(\chi_{6223}(4979,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{41}{63}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{44}{63}\right)\)