Properties

Label 6223.8
Modulus $6223$
Conductor $6223$
Order $7$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6223, base_ring=CyclotomicField(14)) M = H._module chi = DirichletCharacter(H, M([12,10]))
 
Copy content pari:[g,chi] = znchar(Mod(8,6223))
 

Basic properties

Modulus: \(6223\)
Conductor: \(6223\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(7\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 6223.z

\(\chi_{6223}(8,\cdot)\) \(\chi_{6223}(64,\cdot)\) \(\chi_{6223}(512,\cdot)\) \(\chi_{6223}(778,\cdot)\) \(\chi_{6223}(1653,\cdot)\) \(\chi_{6223}(4096,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: Number field defined by a degree 7 polynomial

Values on generators

\((5589,638)\) → \((e\left(\frac{6}{7}\right),e\left(\frac{5}{7}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(11\)\(12\)
\( \chi_{ 6223 }(8, a) \) \(1\)\(1\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{3}{7}\right)\)\(1\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{6}{7}\right)\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 6223 }(8,a) \;\) at \(\;a = \) e.g. 2