sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6223, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([81,73]))
pari:[g,chi] = znchar(Mod(6,6223))
Modulus: | \(6223\) | |
Conductor: | \(6223\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(126\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6223}(6,\cdot)\)
\(\chi_{6223}(118,\cdot)\)
\(\chi_{6223}(370,\cdot)\)
\(\chi_{6223}(594,\cdot)\)
\(\chi_{6223}(874,\cdot)\)
\(\chi_{6223}(1196,\cdot)\)
\(\chi_{6223}(1210,\cdot)\)
\(\chi_{6223}(1553,\cdot)\)
\(\chi_{6223}(1875,\cdot)\)
\(\chi_{6223}(2001,\cdot)\)
\(\chi_{6223}(2015,\cdot)\)
\(\chi_{6223}(2379,\cdot)\)
\(\chi_{6223}(2715,\cdot)\)
\(\chi_{6223}(3030,\cdot)\)
\(\chi_{6223}(3289,\cdot)\)
\(\chi_{6223}(3394,\cdot)\)
\(\chi_{6223}(3436,\cdot)\)
\(\chi_{6223}(3611,\cdot)\)
\(\chi_{6223}(4087,\cdot)\)
\(\chi_{6223}(4122,\cdot)\)
\(\chi_{6223}(4129,\cdot)\)
\(\chi_{6223}(4248,\cdot)\)
\(\chi_{6223}(4276,\cdot)\)
\(\chi_{6223}(4528,\cdot)\)
\(\chi_{6223}(4584,\cdot)\)
\(\chi_{6223}(4745,\cdot)\)
\(\chi_{6223}(4927,\cdot)\)
\(\chi_{6223}(5158,\cdot)\)
\(\chi_{6223}(5186,\cdot)\)
\(\chi_{6223}(5221,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5589,638)\) → \((e\left(\frac{9}{14}\right),e\left(\frac{73}{126}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
\( \chi_{ 6223 }(6, a) \) |
\(1\) | \(1\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{41}{63}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{63}\right)\) |
sage:chi.jacobi_sum(n)