sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6223, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([81,26]))
pari:[g,chi] = znchar(Mod(5543,6223))
| Modulus: | \(6223\) | |
| Conductor: | \(6223\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(126\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6223}(13,\cdot)\)
\(\chi_{6223}(153,\cdot)\)
\(\chi_{6223}(314,\cdot)\)
\(\chi_{6223}(496,\cdot)\)
\(\chi_{6223}(811,\cdot)\)
\(\chi_{6223}(1161,\cdot)\)
\(\chi_{6223}(1217,\cdot)\)
\(\chi_{6223}(1287,\cdot)\)
\(\chi_{6223}(1693,\cdot)\)
\(\chi_{6223}(1735,\cdot)\)
\(\chi_{6223}(1840,\cdot)\)
\(\chi_{6223}(2029,\cdot)\)
\(\chi_{6223}(2190,\cdot)\)
\(\chi_{6223}(2295,\cdot)\)
\(\chi_{6223}(2575,\cdot)\)
\(\chi_{6223}(2701,\cdot)\)
\(\chi_{6223}(2708,\cdot)\)
\(\chi_{6223}(3296,\cdot)\)
\(\chi_{6223}(3317,\cdot)\)
\(\chi_{6223}(3373,\cdot)\)
\(\chi_{6223}(3499,\cdot)\)
\(\chi_{6223}(4094,\cdot)\)
\(\chi_{6223}(4108,\cdot)\)
\(\chi_{6223}(4136,\cdot)\)
\(\chi_{6223}(4549,\cdot)\)
\(\chi_{6223}(4710,\cdot)\)
\(\chi_{6223}(4787,\cdot)\)
\(\chi_{6223}(5228,\cdot)\)
\(\chi_{6223}(5403,\cdot)\)
\(\chi_{6223}(5543,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5589,638)\) → \((e\left(\frac{9}{14}\right),e\left(\frac{13}{63}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
| \( \chi_{ 6223 }(5543, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{107}{126}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{53}{126}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{44}{63}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{47}{63}\right)\) | \(e\left(\frac{125}{126}\right)\) |
sage:chi.jacobi_sum(n)