Properties

Label 6223.31
Modulus $6223$
Conductor $889$
Order $126$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6223, base_ring=CyclotomicField(126)) M = H._module chi = DirichletCharacter(H, M([21,46]))
 
Copy content pari:[g,chi] = znchar(Mod(31,6223))
 

Basic properties

Modulus: \(6223\)
Conductor: \(889\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(126\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{889}(31,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 6223.jy

\(\chi_{6223}(31,\cdot)\) \(\chi_{6223}(215,\cdot)\) \(\chi_{6223}(325,\cdot)\) \(\chi_{6223}(374,\cdot)\) \(\chi_{6223}(521,\cdot)\) \(\chi_{6223}(570,\cdot)\) \(\chi_{6223}(656,\cdot)\) \(\chi_{6223}(803,\cdot)\) \(\chi_{6223}(1158,\cdot)\) \(\chi_{6223}(1256,\cdot)\) \(\chi_{6223}(1305,\cdot)\) \(\chi_{6223}(1342,\cdot)\) \(\chi_{6223}(1501,\cdot)\) \(\chi_{6223}(1550,\cdot)\) \(\chi_{6223}(1648,\cdot)\) \(\chi_{6223}(1685,\cdot)\) \(\chi_{6223}(1893,\cdot)\) \(\chi_{6223}(1979,\cdot)\) \(\chi_{6223}(2322,\cdot)\) \(\chi_{6223}(2812,\cdot)\) \(\chi_{6223}(2824,\cdot)\) \(\chi_{6223}(2873,\cdot)\) \(\chi_{6223}(3057,\cdot)\) \(\chi_{6223}(3118,\cdot)\) \(\chi_{6223}(3351,\cdot)\) \(\chi_{6223}(3400,\cdot)\) \(\chi_{6223}(3498,\cdot)\) \(\chi_{6223}(3510,\cdot)\) \(\chi_{6223}(3694,\cdot)\) \(\chi_{6223}(3804,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

\((5589,638)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{23}{63}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(11\)\(12\)
\( \chi_{ 6223 }(31, a) \) \(-1\)\(1\)\(e\left(\frac{13}{21}\right)\)\(e\left(\frac{67}{126}\right)\)\(e\left(\frac{5}{21}\right)\)\(e\left(\frac{25}{42}\right)\)\(e\left(\frac{19}{126}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{4}{63}\right)\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{31}{63}\right)\)\(e\left(\frac{97}{126}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 6223 }(31,a) \;\) at \(\;a = \) e.g. 2