sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6223, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([99,94]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(13,6223))
         
     
    
  
   | Modulus: |  \(6223\) |   |  
   | Conductor: |  \(6223\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(126\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   no  |  
   | Primitive: |   yes |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  odd |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{6223}(13,\cdot)\)
  \(\chi_{6223}(153,\cdot)\)
  \(\chi_{6223}(314,\cdot)\)
  \(\chi_{6223}(496,\cdot)\)
  \(\chi_{6223}(811,\cdot)\)
  \(\chi_{6223}(1161,\cdot)\)
  \(\chi_{6223}(1217,\cdot)\)
  \(\chi_{6223}(1287,\cdot)\)
  \(\chi_{6223}(1693,\cdot)\)
  \(\chi_{6223}(1735,\cdot)\)
  \(\chi_{6223}(1840,\cdot)\)
  \(\chi_{6223}(2029,\cdot)\)
  \(\chi_{6223}(2190,\cdot)\)
  \(\chi_{6223}(2295,\cdot)\)
  \(\chi_{6223}(2575,\cdot)\)
  \(\chi_{6223}(2701,\cdot)\)
  \(\chi_{6223}(2708,\cdot)\)
  \(\chi_{6223}(3296,\cdot)\)
  \(\chi_{6223}(3317,\cdot)\)
  \(\chi_{6223}(3373,\cdot)\)
  \(\chi_{6223}(3499,\cdot)\)
  \(\chi_{6223}(4094,\cdot)\)
  \(\chi_{6223}(4108,\cdot)\)
  \(\chi_{6223}(4136,\cdot)\)
  \(\chi_{6223}(4549,\cdot)\)
  \(\chi_{6223}(4710,\cdot)\)
  \(\chi_{6223}(4787,\cdot)\)
  \(\chi_{6223}(5228,\cdot)\)
  \(\chi_{6223}(5403,\cdot)\)
  \(\chi_{6223}(5543,\cdot)\)
 ... 
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((5589,638)\) → \((e\left(\frac{11}{14}\right),e\left(\frac{47}{63}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |       
    
    
      | \( \chi_{ 6223 }(13, a) \) | 
      \(-1\) | \(1\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{67}{126}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{85}{126}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{4}{63}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{10}{63}\right)\) | \(e\left(\frac{103}{126}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)