sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6223, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([33,19]))
pari:[g,chi] = znchar(Mod(12,6223))
Modulus: | \(6223\) | |
Conductor: | \(6223\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(126\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6223}(12,\cdot)\)
\(\chi_{6223}(194,\cdot)\)
\(\chi_{6223}(283,\cdot)\)
\(\chi_{6223}(355,\cdot)\)
\(\chi_{6223}(495,\cdot)\)
\(\chi_{6223}(642,\cdot)\)
\(\chi_{6223}(649,\cdot)\)
\(\chi_{6223}(810,\cdot)\)
\(\chi_{6223}(1062,\cdot)\)
\(\chi_{6223}(1515,\cdot)\)
\(\chi_{6223}(1963,\cdot)\)
\(\chi_{6223}(2182,\cdot)\)
\(\chi_{6223}(2341,\cdot)\)
\(\chi_{6223}(2593,\cdot)\)
\(\chi_{6223}(2637,\cdot)\)
\(\chi_{6223}(2712,\cdot)\)
\(\chi_{6223}(3232,\cdot)\)
\(\chi_{6223}(3358,\cdot)\)
\(\chi_{6223}(3414,\cdot)\)
\(\chi_{6223}(3435,\cdot)\)
\(\chi_{6223}(3538,\cdot)\)
\(\chi_{6223}(3545,\cdot)\)
\(\chi_{6223}(3895,\cdot)\)
\(\chi_{6223}(4156,\cdot)\)
\(\chi_{6223}(4541,\cdot)\)
\(\chi_{6223}(4658,\cdot)\)
\(\chi_{6223}(4702,\cdot)\)
\(\chi_{6223}(4742,\cdot)\)
\(\chi_{6223}(4777,\cdot)\)
\(\chi_{6223}(4891,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5589,638)\) → \((e\left(\frac{11}{42}\right),e\left(\frac{19}{126}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
\( \chi_{ 6223 }(12, a) \) |
\(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{26}{63}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{5}{63}\right)\) | \(1\) | \(e\left(\frac{52}{63}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{46}{63}\right)\) | \(e\left(\frac{47}{63}\right)\) |
sage:chi.jacobi_sum(n)