sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6223, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([108,22]))
pari:[g,chi] = znchar(Mod(1086,6223))
Modulus: | \(6223\) | |
Conductor: | \(6223\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(63\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6223}(120,\cdot)\)
\(\chi_{6223}(267,\cdot)\)
\(\chi_{6223}(358,\cdot)\)
\(\chi_{6223}(666,\cdot)\)
\(\chi_{6223}(925,\cdot)\)
\(\chi_{6223}(1086,\cdot)\)
\(\chi_{6223}(1408,\cdot)\)
\(\chi_{6223}(1541,\cdot)\)
\(\chi_{6223}(1723,\cdot)\)
\(\chi_{6223}(1730,\cdot)\)
\(\chi_{6223}(1793,\cdot)\)
\(\chi_{6223}(1954,\cdot)\)
\(\chi_{6223}(2241,\cdot)\)
\(\chi_{6223}(2780,\cdot)\)
\(\chi_{6223}(2836,\cdot)\)
\(\chi_{6223}(2962,\cdot)\)
\(\chi_{6223}(2983,\cdot)\)
\(\chi_{6223}(3074,\cdot)\)
\(\chi_{6223}(3249,\cdot)\)
\(\chi_{6223}(3263,\cdot)\)
\(\chi_{6223}(3417,\cdot)\)
\(\chi_{6223}(3550,\cdot)\)
\(\chi_{6223}(3704,\cdot)\)
\(\chi_{6223}(3718,\cdot)\)
\(\chi_{6223}(3781,\cdot)\)
\(\chi_{6223}(4124,\cdot)\)
\(\chi_{6223}(4145,\cdot)\)
\(\chi_{6223}(4327,\cdot)\)
\(\chi_{6223}(5237,\cdot)\)
\(\chi_{6223}(5405,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5589,638)\) → \((e\left(\frac{6}{7}\right),e\left(\frac{11}{63}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
\( \chi_{ 6223 }(1086, a) \) |
\(1\) | \(1\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{2}{63}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{4}{63}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{10}{63}\right)\) | \(e\left(\frac{47}{63}\right)\) |
sage:chi.jacobi_sum(n)