sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6223, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([102,112]))
pari:[g,chi] = znchar(Mod(1068,6223))
Modulus: | \(6223\) | |
Conductor: | \(6223\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(63\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6223}(37,\cdot)\)
\(\chi_{6223}(149,\cdot)\)
\(\chi_{6223}(179,\cdot)\)
\(\chi_{6223}(480,\cdot)\)
\(\chi_{6223}(576,\cdot)\)
\(\chi_{6223}(865,\cdot)\)
\(\chi_{6223}(926,\cdot)\)
\(\chi_{6223}(1038,\cdot)\)
\(\chi_{6223}(1068,\cdot)\)
\(\chi_{6223}(1369,\cdot)\)
\(\chi_{6223}(1465,\cdot)\)
\(\chi_{6223}(1754,\cdot)\)
\(\chi_{6223}(1815,\cdot)\)
\(\chi_{6223}(1927,\cdot)\)
\(\chi_{6223}(1957,\cdot)\)
\(\chi_{6223}(2258,\cdot)\)
\(\chi_{6223}(2354,\cdot)\)
\(\chi_{6223}(2643,\cdot)\)
\(\chi_{6223}(2704,\cdot)\)
\(\chi_{6223}(2816,\cdot)\)
\(\chi_{6223}(2846,\cdot)\)
\(\chi_{6223}(3147,\cdot)\)
\(\chi_{6223}(3243,\cdot)\)
\(\chi_{6223}(3532,\cdot)\)
\(\chi_{6223}(3593,\cdot)\)
\(\chi_{6223}(3735,\cdot)\)
\(\chi_{6223}(4132,\cdot)\)
\(\chi_{6223}(4421,\cdot)\)
\(\chi_{6223}(4482,\cdot)\)
\(\chi_{6223}(4594,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5589,638)\) → \((e\left(\frac{17}{21}\right),e\left(\frac{8}{9}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
\( \chi_{ 6223 }(1068, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{44}{63}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{47}{63}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{25}{63}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{52}{63}\right)\) | \(e\left(\frac{50}{63}\right)\) |
sage:chi.jacobi_sum(n)