sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6223, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([54,62]))
pari:[g,chi] = znchar(Mod(1058,6223))
Modulus: | \(6223\) | |
Conductor: | \(6223\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(63\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6223}(176,\cdot)\)
\(\chi_{6223}(526,\cdot)\)
\(\chi_{6223}(582,\cdot)\)
\(\chi_{6223}(652,\cdot)\)
\(\chi_{6223}(1058,\cdot)\)
\(\chi_{6223}(1100,\cdot)\)
\(\chi_{6223}(1205,\cdot)\)
\(\chi_{6223}(1394,\cdot)\)
\(\chi_{6223}(1555,\cdot)\)
\(\chi_{6223}(1660,\cdot)\)
\(\chi_{6223}(1940,\cdot)\)
\(\chi_{6223}(2066,\cdot)\)
\(\chi_{6223}(2073,\cdot)\)
\(\chi_{6223}(2661,\cdot)\)
\(\chi_{6223}(2682,\cdot)\)
\(\chi_{6223}(2738,\cdot)\)
\(\chi_{6223}(2864,\cdot)\)
\(\chi_{6223}(3459,\cdot)\)
\(\chi_{6223}(3473,\cdot)\)
\(\chi_{6223}(3501,\cdot)\)
\(\chi_{6223}(3914,\cdot)\)
\(\chi_{6223}(4075,\cdot)\)
\(\chi_{6223}(4152,\cdot)\)
\(\chi_{6223}(4593,\cdot)\)
\(\chi_{6223}(4768,\cdot)\)
\(\chi_{6223}(4908,\cdot)\)
\(\chi_{6223}(5034,\cdot)\)
\(\chi_{6223}(5286,\cdot)\)
\(\chi_{6223}(5370,\cdot)\)
\(\chi_{6223}(5447,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5589,638)\) → \((e\left(\frac{3}{7}\right),e\left(\frac{31}{63}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
\( \chi_{ 6223 }(1058, a) \) |
\(1\) | \(1\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{58}{63}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{31}{63}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{53}{63}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{38}{63}\right)\) | \(e\left(\frac{4}{63}\right)\) |
sage:chi.jacobi_sum(n)