sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6223, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([108,116]))
pari:[g,chi] = znchar(Mod(1037,6223))
Modulus: | \(6223\) | |
Conductor: | \(6223\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(63\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6223}(36,\cdot)\)
\(\chi_{6223}(211,\cdot)\)
\(\chi_{6223}(463,\cdot)\)
\(\chi_{6223}(505,\cdot)\)
\(\chi_{6223}(596,\cdot)\)
\(\chi_{6223}(960,\cdot)\)
\(\chi_{6223}(1002,\cdot)\)
\(\chi_{6223}(1037,\cdot)\)
\(\chi_{6223}(1065,\cdot)\)
\(\chi_{6223}(1296,\cdot)\)
\(\chi_{6223}(1478,\cdot)\)
\(\chi_{6223}(1639,\cdot)\)
\(\chi_{6223}(1695,\cdot)\)
\(\chi_{6223}(1947,\cdot)\)
\(\chi_{6223}(1975,\cdot)\)
\(\chi_{6223}(2094,\cdot)\)
\(\chi_{6223}(2101,\cdot)\)
\(\chi_{6223}(2136,\cdot)\)
\(\chi_{6223}(2612,\cdot)\)
\(\chi_{6223}(2787,\cdot)\)
\(\chi_{6223}(2829,\cdot)\)
\(\chi_{6223}(2934,\cdot)\)
\(\chi_{6223}(3193,\cdot)\)
\(\chi_{6223}(3508,\cdot)\)
\(\chi_{6223}(3844,\cdot)\)
\(\chi_{6223}(4208,\cdot)\)
\(\chi_{6223}(4222,\cdot)\)
\(\chi_{6223}(4348,\cdot)\)
\(\chi_{6223}(4670,\cdot)\)
\(\chi_{6223}(5013,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5589,638)\) → \((e\left(\frac{6}{7}\right),e\left(\frac{58}{63}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
\( \chi_{ 6223 }(1037, a) \) |
\(1\) | \(1\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{22}{63}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{58}{63}\right)\) |
sage:chi.jacobi_sum(n)