sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6223, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([9,65]))
pari:[g,chi] = znchar(Mod(1007,6223))
Modulus: | \(6223\) | |
Conductor: | \(6223\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(126\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6223}(237,\cdot)\)
\(\chi_{6223}(300,\cdot)\)
\(\chi_{6223}(573,\cdot)\)
\(\chi_{6223}(720,\cdot)\)
\(\chi_{6223}(741,\cdot)\)
\(\chi_{6223}(944,\cdot)\)
\(\chi_{6223}(1007,\cdot)\)
\(\chi_{6223}(1182,\cdot)\)
\(\chi_{6223}(1490,\cdot)\)
\(\chi_{6223}(1511,\cdot)\)
\(\chi_{6223}(1581,\cdot)\)
\(\chi_{6223}(1602,\cdot)\)
\(\chi_{6223}(1658,\cdot)\)
\(\chi_{6223}(2085,\cdot)\)
\(\chi_{6223}(2344,\cdot)\)
\(\chi_{6223}(2631,\cdot)\)
\(\chi_{6223}(2652,\cdot)\)
\(\chi_{6223}(3051,\cdot)\)
\(\chi_{6223}(3345,\cdot)\)
\(\chi_{6223}(3604,\cdot)\)
\(\chi_{6223}(3695,\cdot)\)
\(\chi_{6223}(3779,\cdot)\)
\(\chi_{6223}(4038,\cdot)\)
\(\chi_{6223}(4332,\cdot)\)
\(\chi_{6223}(4451,\cdot)\)
\(\chi_{6223}(4542,\cdot)\)
\(\chi_{6223}(4766,\cdot)\)
\(\chi_{6223}(4808,\cdot)\)
\(\chi_{6223}(4871,\cdot)\)
\(\chi_{6223}(4976,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5589,638)\) → \((e\left(\frac{1}{14}\right),e\left(\frac{65}{126}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
\( \chi_{ 6223 }(1007, a) \) |
\(1\) | \(1\) | \(1\) | \(e\left(\frac{37}{63}\right)\) | \(1\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{37}{63}\right)\) | \(1\) | \(e\left(\frac{11}{63}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{59}{63}\right)\) | \(e\left(\frac{37}{63}\right)\) |
sage:chi.jacobi_sum(n)