sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(61)
sage: chi = H[49]
pari: [g,chi] = znchar(Mod(49,61))
Basic properties
sage: chi.conductor()
pari: znconreyconductor(g,chi)
| ||
Conductor | = | 61 |
sage: chi.multiplicative_order()
pari: charorder(g,chi)
| ||
Order | = | 30 |
Real | = | No |
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
| ||
Primitive | = | Yes |
sage: chi.is_odd()
pari: zncharisodd(g,chi)
| ||
Parity | = | Even |
Orbit label | = | 61.k |
Orbit index | = | 11 |
Galois orbit
sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(\chi_{61}(4,\cdot)\) \(\chi_{61}(5,\cdot)\) \(\chi_{61}(19,\cdot)\) \(\chi_{61}(36,\cdot)\) \(\chi_{61}(39,\cdot)\) \(\chi_{61}(45,\cdot)\) \(\chi_{61}(46,\cdot)\) \(\chi_{61}(49,\cdot)\)
Values on generators
\(2\) → \(e\left(\frac{19}{30}\right)\)
Values
-1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
\(1\) | \(1\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(-1\) |
Related number fields
Field of values | \(\Q(\zeta_{15})\) |
Gauss sum
sage: chi.sage_character().gauss_sum(a)
pari: znchargauss(g,chi,a)
\(\displaystyle \tau_{2}(\chi_{61}(49,\cdot)) = \sum_{r\in \Z/61\Z} \chi_{61}(49,r) e\left(\frac{2r}{61}\right) = 6.299258106+4.6172878743i \)
Jacobi sum
sage: chi.sage_character().jacobi_sum(n)
\( \displaystyle J(\chi_{61}(49,\cdot),\chi_{61}(1,\cdot)) = \sum_{r\in \Z/61\Z} \chi_{61}(49,r) \chi_{61}(1,1-r) = -1 \)
Kloosterman sum
sage: chi.sage_character().kloosterman_sum(a,b)
\( \displaystyle K(1,2,\chi_{61}(49,·))
= \sum_{r \in \Z/61\Z}
\chi_{61}(49,r) e\left(\frac{1 r + 2 r^{-1}}{61}\right)
= 1.361619431+-3.058247314i \)