Properties

Modulus $6084$
Structure \(C_{2}\times C_{6}\times C_{156}\)
Order $1872$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(6084)
 
pari: g = idealstar(,6084,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 1872
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{2}\times C_{6}\times C_{156}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{6084}(3043,\cdot)$, $\chi_{6084}(677,\cdot)$, $\chi_{6084}(3889,\cdot)$

First 32 of 1872 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(5\) \(7\) \(11\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(35\)
\(\chi_{6084}(1,\cdot)\) 6084.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{6084}(5,\cdot)\) 6084.ea 156 no \(1\) \(1\) \(e\left(\frac{107}{156}\right)\) \(e\left(\frac{79}{156}\right)\) \(e\left(\frac{121}{156}\right)\) \(e\left(\frac{12}{13}\right)\) \(-i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{137}{156}\right)\) \(e\left(\frac{5}{26}\right)\)
\(\chi_{6084}(7,\cdot)\) 6084.eh 156 yes \(1\) \(1\) \(e\left(\frac{79}{156}\right)\) \(e\left(\frac{29}{52}\right)\) \(e\left(\frac{127}{156}\right)\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{1}{12}\right)\) \(1\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{37}{156}\right)\) \(e\left(\frac{5}{78}\right)\)
\(\chi_{6084}(11,\cdot)\) 6084.el 156 yes \(-1\) \(1\) \(e\left(\frac{121}{156}\right)\) \(e\left(\frac{127}{156}\right)\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{43}{78}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{109}{156}\right)\) \(e\left(\frac{23}{39}\right)\)
\(\chi_{6084}(17,\cdot)\) 6084.cz 78 no \(-1\) \(1\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{5}{78}\right)\)
\(\chi_{6084}(19,\cdot)\) 6084.cb 12 no \(1\) \(1\) \(-i\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(i\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{6084}(23,\cdot)\) 6084.bc 6 no \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{6084}(25,\cdot)\) 6084.de 78 no \(1\) \(1\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{43}{78}\right)\) \(e\left(\frac{11}{13}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{5}{13}\right)\)
\(\chi_{6084}(29,\cdot)\) 6084.dk 78 no \(-1\) \(1\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{19}{78}\right)\)
\(\chi_{6084}(31,\cdot)\) 6084.eo 156 yes \(1\) \(1\) \(e\left(\frac{137}{156}\right)\) \(e\left(\frac{37}{156}\right)\) \(e\left(\frac{109}{156}\right)\) \(e\left(\frac{17}{26}\right)\) \(i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{155}{156}\right)\) \(e\left(\frac{3}{26}\right)\)
\(\chi_{6084}(35,\cdot)\) 6084.dx 78 no \(1\) \(1\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{19}{78}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{10}{39}\right)\)
\(\chi_{6084}(37,\cdot)\) 6084.eg 156 no \(-1\) \(1\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{89}{156}\right)\) \(e\left(\frac{109}{156}\right)\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{11}{39}\right)\)
\(\chi_{6084}(41,\cdot)\) 6084.en 156 no \(1\) \(1\) \(e\left(\frac{11}{156}\right)\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{149}{156}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{5}{12}\right)\) \(1\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{17}{156}\right)\) \(e\left(\frac{55}{78}\right)\)
\(\chi_{6084}(43,\cdot)\) 6084.dc 78 yes \(-1\) \(1\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{17}{78}\right)\)
\(\chi_{6084}(47,\cdot)\) 6084.eb 156 yes \(-1\) \(1\) \(e\left(\frac{73}{156}\right)\) \(e\left(\frac{59}{156}\right)\) \(e\left(\frac{41}{156}\right)\) \(e\left(\frac{6}{13}\right)\) \(-i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{49}{156}\right)\) \(e\left(\frac{11}{13}\right)\)
\(\chi_{6084}(49,\cdot)\) 6084.dl 78 no \(1\) \(1\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{5}{39}\right)\)
\(\chi_{6084}(53,\cdot)\) 6084.cn 26 no \(-1\) \(1\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{21}{26}\right)\) \(1\) \(-1\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{19}{26}\right)\)
\(\chi_{6084}(55,\cdot)\) 6084.cy 78 no \(-1\) \(1\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{61}{78}\right)\)
\(\chi_{6084}(59,\cdot)\) 6084.el 156 yes \(-1\) \(1\) \(e\left(\frac{29}{156}\right)\) \(e\left(\frac{131}{156}\right)\) \(e\left(\frac{23}{52}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{137}{156}\right)\) \(e\left(\frac{1}{39}\right)\)
\(\chi_{6084}(61,\cdot)\) 6084.cr 39 no \(1\) \(1\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{4}{39}\right)\)
\(\chi_{6084}(67,\cdot)\) 6084.eh 156 yes \(1\) \(1\) \(e\left(\frac{125}{156}\right)\) \(e\left(\frac{11}{52}\right)\) \(e\left(\frac{41}{156}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{11}{12}\right)\) \(1\) \(e\left(\frac{47}{78}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{23}{156}\right)\) \(e\left(\frac{1}{78}\right)\)
\(\chi_{6084}(71,\cdot)\) 6084.em 156 no \(-1\) \(1\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{73}{156}\right)\) \(e\left(\frac{71}{156}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{34}{39}\right)\)
\(\chi_{6084}(73,\cdot)\) 6084.cw 52 no \(-1\) \(1\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{19}{26}\right)\) \(i\) \(-1\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{12}{13}\right)\)
\(\chi_{6084}(77,\cdot)\) 6084.dq 78 no \(-1\) \(1\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{1}{26}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{53}{78}\right)\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{17}{26}\right)\)
\(\chi_{6084}(79,\cdot)\) 6084.dp 78 yes \(-1\) \(1\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{6}{13}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{9}{26}\right)\)
\(\chi_{6084}(83,\cdot)\) 6084.eb 156 yes \(-1\) \(1\) \(e\left(\frac{67}{156}\right)\) \(e\left(\frac{5}{156}\right)\) \(e\left(\frac{59}{156}\right)\) \(e\left(\frac{8}{13}\right)\) \(i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{67}{78}\right)\) \(e\left(\frac{55}{78}\right)\) \(e\left(\frac{139}{156}\right)\) \(e\left(\frac{6}{13}\right)\)
\(\chi_{6084}(85,\cdot)\) 6084.ef 156 no \(-1\) \(1\) \(e\left(\frac{95}{156}\right)\) \(e\left(\frac{101}{156}\right)\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{78}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{83}{156}\right)\) \(e\left(\frac{10}{39}\right)\)
\(\chi_{6084}(89,\cdot)\) 6084.bv 12 no \(1\) \(1\) \(-i\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(i\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{6084}(95,\cdot)\) 6084.dt 78 yes \(1\) \(1\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{1}{39}\right)\)
\(\chi_{6084}(97,\cdot)\) 6084.ec 156 no \(-1\) \(1\) \(e\left(\frac{49}{156}\right)\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{139}{156}\right)\) \(e\left(\frac{71}{78}\right)\) \(e\left(\frac{1}{12}\right)\) \(-1\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{97}{156}\right)\) \(e\left(\frac{25}{39}\right)\)
\(\chi_{6084}(101,\cdot)\) 6084.do 78 no \(-1\) \(1\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{53}{78}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{43}{78}\right)\)
\(\chi_{6084}(103,\cdot)\) 6084.dj 78 yes \(-1\) \(1\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{5}{13}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{1}{26}\right)\)
Click here to search among the remaining 1840 characters.