sage: H = DirichletGroup(6084)
pari: g = idealstar(,6084,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 1872 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{6}\times C_{156}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{6084}(3043,\cdot)$, $\chi_{6084}(677,\cdot)$, $\chi_{6084}(3889,\cdot)$ |
First 32 of 1872 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{6084}(1,\cdot)\) | 6084.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{6084}(5,\cdot)\) | 6084.ea | 156 | no | \(1\) | \(1\) | \(e\left(\frac{107}{156}\right)\) | \(e\left(\frac{79}{156}\right)\) | \(e\left(\frac{121}{156}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(-i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{29}{78}\right)\) | \(e\left(\frac{11}{78}\right)\) | \(e\left(\frac{137}{156}\right)\) | \(e\left(\frac{5}{26}\right)\) |
\(\chi_{6084}(7,\cdot)\) | 6084.eh | 156 | yes | \(1\) | \(1\) | \(e\left(\frac{79}{156}\right)\) | \(e\left(\frac{29}{52}\right)\) | \(e\left(\frac{127}{156}\right)\) | \(e\left(\frac{11}{78}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(1\) | \(e\left(\frac{1}{78}\right)\) | \(e\left(\frac{4}{39}\right)\) | \(e\left(\frac{37}{156}\right)\) | \(e\left(\frac{5}{78}\right)\) |
\(\chi_{6084}(11,\cdot)\) | 6084.el | 156 | yes | \(-1\) | \(1\) | \(e\left(\frac{121}{156}\right)\) | \(e\left(\frac{127}{156}\right)\) | \(e\left(\frac{35}{52}\right)\) | \(e\left(\frac{35}{39}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{43}{78}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{109}{156}\right)\) | \(e\left(\frac{23}{39}\right)\) |
\(\chi_{6084}(17,\cdot)\) | 6084.cz | 78 | no | \(-1\) | \(1\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{11}{78}\right)\) | \(e\left(\frac{35}{39}\right)\) | \(e\left(\frac{11}{78}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{73}{78}\right)\) | \(e\left(\frac{17}{26}\right)\) | \(e\left(\frac{5}{78}\right)\) |
\(\chi_{6084}(19,\cdot)\) | 6084.cb | 12 | no | \(1\) | \(1\) | \(-i\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(i\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{6084}(23,\cdot)\) | 6084.bc | 6 | no | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{6084}(25,\cdot)\) | 6084.de | 78 | no | \(1\) | \(1\) | \(e\left(\frac{29}{78}\right)\) | \(e\left(\frac{1}{78}\right)\) | \(e\left(\frac{43}{78}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{29}{39}\right)\) | \(e\left(\frac{11}{39}\right)\) | \(e\left(\frac{59}{78}\right)\) | \(e\left(\frac{5}{13}\right)\) |
\(\chi_{6084}(29,\cdot)\) | 6084.dk | 78 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{78}\right)\) | \(e\left(\frac{4}{39}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{73}{78}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{39}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{19}{78}\right)\) |
\(\chi_{6084}(31,\cdot)\) | 6084.eo | 156 | yes | \(1\) | \(1\) | \(e\left(\frac{137}{156}\right)\) | \(e\left(\frac{37}{156}\right)\) | \(e\left(\frac{109}{156}\right)\) | \(e\left(\frac{17}{26}\right)\) | \(i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{59}{78}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{155}{156}\right)\) | \(e\left(\frac{3}{26}\right)\) |
\(\chi_{6084}(35,\cdot)\) | 6084.dx | 78 | no | \(1\) | \(1\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{5}{78}\right)\) | \(e\left(\frac{23}{39}\right)\) | \(e\left(\frac{5}{78}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{19}{78}\right)\) | \(e\left(\frac{3}{26}\right)\) | \(e\left(\frac{10}{39}\right)\) |
\(\chi_{6084}(37,\cdot)\) | 6084.eg | 156 | no | \(-1\) | \(1\) | \(e\left(\frac{37}{52}\right)\) | \(e\left(\frac{89}{156}\right)\) | \(e\left(\frac{109}{156}\right)\) | \(e\left(\frac{25}{78}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{17}{52}\right)\) | \(e\left(\frac{11}{39}\right)\) |
\(\chi_{6084}(41,\cdot)\) | 6084.en | 156 | no | \(1\) | \(1\) | \(e\left(\frac{11}{156}\right)\) | \(e\left(\frac{33}{52}\right)\) | \(e\left(\frac{149}{156}\right)\) | \(e\left(\frac{2}{39}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(1\) | \(e\left(\frac{11}{78}\right)\) | \(e\left(\frac{49}{78}\right)\) | \(e\left(\frac{17}{156}\right)\) | \(e\left(\frac{55}{78}\right)\) |
\(\chi_{6084}(43,\cdot)\) | 6084.dc | 78 | yes | \(-1\) | \(1\) | \(e\left(\frac{29}{78}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{7}{39}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{29}{39}\right)\) | \(e\left(\frac{37}{39}\right)\) | \(e\left(\frac{10}{39}\right)\) | \(e\left(\frac{17}{78}\right)\) |
\(\chi_{6084}(47,\cdot)\) | 6084.eb | 156 | yes | \(-1\) | \(1\) | \(e\left(\frac{73}{156}\right)\) | \(e\left(\frac{59}{156}\right)\) | \(e\left(\frac{41}{156}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(-i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{73}{78}\right)\) | \(e\left(\frac{25}{78}\right)\) | \(e\left(\frac{49}{156}\right)\) | \(e\left(\frac{11}{13}\right)\) |
\(\chi_{6084}(49,\cdot)\) | 6084.dl | 78 | no | \(1\) | \(1\) | \(e\left(\frac{1}{78}\right)\) | \(e\left(\frac{3}{26}\right)\) | \(e\left(\frac{49}{78}\right)\) | \(e\left(\frac{11}{39}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{8}{39}\right)\) | \(e\left(\frac{37}{78}\right)\) | \(e\left(\frac{5}{39}\right)\) |
\(\chi_{6084}(53,\cdot)\) | 6084.cn | 26 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{19}{26}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(1\) | \(-1\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{19}{26}\right)\) |
\(\chi_{6084}(55,\cdot)\) | 6084.cy | 78 | no | \(-1\) | \(1\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{25}{78}\right)\) | \(e\left(\frac{35}{78}\right)\) | \(e\left(\frac{32}{39}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{61}{78}\right)\) |
\(\chi_{6084}(59,\cdot)\) | 6084.el | 156 | yes | \(-1\) | \(1\) | \(e\left(\frac{29}{156}\right)\) | \(e\left(\frac{131}{156}\right)\) | \(e\left(\frac{23}{52}\right)\) | \(e\left(\frac{10}{39}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{29}{78}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{137}{156}\right)\) | \(e\left(\frac{1}{39}\right)\) |
\(\chi_{6084}(61,\cdot)\) | 6084.cr | 39 | no | \(1\) | \(1\) | \(e\left(\frac{16}{39}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{4}{39}\right)\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{32}{39}\right)\) | \(e\left(\frac{22}{39}\right)\) | \(e\left(\frac{7}{39}\right)\) | \(e\left(\frac{4}{39}\right)\) |
\(\chi_{6084}(67,\cdot)\) | 6084.eh | 156 | yes | \(1\) | \(1\) | \(e\left(\frac{125}{156}\right)\) | \(e\left(\frac{11}{52}\right)\) | \(e\left(\frac{41}{156}\right)\) | \(e\left(\frac{49}{78}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(1\) | \(e\left(\frac{47}{78}\right)\) | \(e\left(\frac{32}{39}\right)\) | \(e\left(\frac{23}{156}\right)\) | \(e\left(\frac{1}{78}\right)\) |
\(\chi_{6084}(71,\cdot)\) | 6084.em | 156 | no | \(-1\) | \(1\) | \(e\left(\frac{21}{52}\right)\) | \(e\left(\frac{73}{156}\right)\) | \(e\left(\frac{71}{156}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{49}{78}\right)\) | \(e\left(\frac{49}{52}\right)\) | \(e\left(\frac{34}{39}\right)\) |
\(\chi_{6084}(73,\cdot)\) | 6084.cw | 52 | no | \(-1\) | \(1\) | \(e\left(\frac{49}{52}\right)\) | \(e\left(\frac{51}{52}\right)\) | \(e\left(\frac{35}{52}\right)\) | \(e\left(\frac{19}{26}\right)\) | \(i\) | \(-1\) | \(e\left(\frac{23}{26}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{45}{52}\right)\) | \(e\left(\frac{12}{13}\right)\) |
\(\chi_{6084}(77,\cdot)\) | 6084.dq | 78 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{39}\right)\) | \(e\left(\frac{29}{78}\right)\) | \(e\left(\frac{19}{39}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{22}{39}\right)\) | \(e\left(\frac{53}{78}\right)\) | \(e\left(\frac{73}{78}\right)\) | \(e\left(\frac{17}{26}\right)\) |
\(\chi_{6084}(79,\cdot)\) | 6084.dp | 78 | yes | \(-1\) | \(1\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{49}{78}\right)\) | \(e\left(\frac{1}{78}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{17}{39}\right)\) | \(e\left(\frac{32}{39}\right)\) | \(e\left(\frac{5}{78}\right)\) | \(e\left(\frac{9}{26}\right)\) |
\(\chi_{6084}(83,\cdot)\) | 6084.eb | 156 | yes | \(-1\) | \(1\) | \(e\left(\frac{67}{156}\right)\) | \(e\left(\frac{5}{156}\right)\) | \(e\left(\frac{59}{156}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{67}{78}\right)\) | \(e\left(\frac{55}{78}\right)\) | \(e\left(\frac{139}{156}\right)\) | \(e\left(\frac{6}{13}\right)\) |
\(\chi_{6084}(85,\cdot)\) | 6084.ef | 156 | no | \(-1\) | \(1\) | \(e\left(\frac{95}{156}\right)\) | \(e\left(\frac{101}{156}\right)\) | \(e\left(\frac{35}{52}\right)\) | \(e\left(\frac{5}{78}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{17}{78}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{83}{156}\right)\) | \(e\left(\frac{10}{39}\right)\) |
\(\chi_{6084}(89,\cdot)\) | 6084.bv | 12 | no | \(1\) | \(1\) | \(-i\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(i\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{6084}(95,\cdot)\) | 6084.dt | 78 | yes | \(1\) | \(1\) | \(e\left(\frac{17}{39}\right)\) | \(e\left(\frac{23}{39}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{59}{78}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{34}{39}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{5}{39}\right)\) | \(e\left(\frac{1}{39}\right)\) |
\(\chi_{6084}(97,\cdot)\) | 6084.ec | 156 | no | \(-1\) | \(1\) | \(e\left(\frac{49}{156}\right)\) | \(e\left(\frac{17}{52}\right)\) | \(e\left(\frac{139}{156}\right)\) | \(e\left(\frac{71}{78}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-1\) | \(e\left(\frac{49}{78}\right)\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{97}{156}\right)\) | \(e\left(\frac{25}{39}\right)\) |
\(\chi_{6084}(101,\cdot)\) | 6084.do | 78 | no | \(-1\) | \(1\) | \(e\left(\frac{34}{39}\right)\) | \(e\left(\frac{53}{78}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{1}{78}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{29}{39}\right)\) | \(e\left(\frac{3}{26}\right)\) | \(e\left(\frac{59}{78}\right)\) | \(e\left(\frac{43}{78}\right)\) |
\(\chi_{6084}(103,\cdot)\) | 6084.dj | 78 | yes | \(-1\) | \(1\) | \(e\left(\frac{25}{78}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{34}{39}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{25}{39}\right)\) | \(e\left(\frac{31}{39}\right)\) | \(e\left(\frac{14}{39}\right)\) | \(e\left(\frac{1}{26}\right)\) |