Properties

Label 6080.gh
Modulus $6080$
Conductor $380$
Order $36$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6080, base_ring=CyclotomicField(36)) M = H._module chi = DirichletCharacter(H, M([18,0,27,28])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(63,6080)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(6080\)
Conductor: \(380\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(36\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 380.bj
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: Number field defined by a degree 36 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(13\) \(17\) \(21\) \(23\) \(27\) \(29\)
\(\chi_{6080}(63,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{6080}(1023,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{6080}(1087,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{6080}(1727,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{17}{18}\right)\)
\(\chi_{6080}(2303,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{6080}(2943,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{17}{18}\right)\)
\(\chi_{6080}(3007,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{6080}(4223,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{6080}(4607,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{6080}(4927,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{6080}(5823,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{6080}(5887,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{18}\right)\)