Properties

Label 6080.dx
Modulus $6080$
Conductor $6080$
Order $16$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6080, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([8,1,8,8])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(379,6080)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(6080\)
Conductor: \(6080\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: Number field defined by a degree 16 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(13\) \(17\) \(21\) \(23\) \(27\) \(29\)
\(\chi_{6080}(379,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(i\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{3}{16}\right)\)
\(\chi_{6080}(1139,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(-i\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{13}{16}\right)\)
\(\chi_{6080}(1899,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(i\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{7}{16}\right)\)
\(\chi_{6080}(2659,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(-i\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{1}{16}\right)\)
\(\chi_{6080}(3419,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(i\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{11}{16}\right)\)
\(\chi_{6080}(4179,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(-i\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{5}{16}\right)\)
\(\chi_{6080}(4939,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(i\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{15}{16}\right)\)
\(\chi_{6080}(5699,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(-i\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{9}{16}\right)\)