Properties

Label 6080.4639
Modulus $6080$
Conductor $760$
Order $18$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6080, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([9,9,9,13]))
 
Copy content pari:[g,chi] = znchar(Mod(4639,6080))
 

Basic properties

Modulus: \(6080\)
Conductor: \(760\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(18\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{760}(459,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 6080.ej

\(\chi_{6080}(1439,\cdot)\) \(\chi_{6080}(2719,\cdot)\) \(\chi_{6080}(3359,\cdot)\) \(\chi_{6080}(4639,\cdot)\) \(\chi_{6080}(5599,\cdot)\) \(\chi_{6080}(5919,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: 18.18.1436650532447139184230793216000000000.1

Values on generators

\((191,5701,1217,1921)\) → \((-1,-1,-1,e\left(\frac{13}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 6080 }(4639, a) \) \(1\)\(1\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{7}{9}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 6080 }(4639,a) \;\) at \(\;a = \) e.g. 2