sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6080, base_ring=CyclotomicField(16))
M = H._module
chi = DirichletCharacter(H, M([8,9,8,8]))
pari:[g,chi] = znchar(Mod(3419,6080))
| Modulus: | \(6080\) | |
| Conductor: | \(6080\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(16\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6080}(379,\cdot)\)
\(\chi_{6080}(1139,\cdot)\)
\(\chi_{6080}(1899,\cdot)\)
\(\chi_{6080}(2659,\cdot)\)
\(\chi_{6080}(3419,\cdot)\)
\(\chi_{6080}(4179,\cdot)\)
\(\chi_{6080}(4939,\cdot)\)
\(\chi_{6080}(5699,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((191,5701,1217,1921)\) → \((-1,e\left(\frac{9}{16}\right),-1,-1)\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(21\) | \(23\) | \(27\) | \(29\) |
| \( \chi_{ 6080 }(3419, a) \) |
\(1\) | \(1\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(i\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) |
sage:chi.jacobi_sum(n)