Properties

Label 6080.2317
Modulus $6080$
Conductor $6080$
Order $16$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6080, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([0,15,4,8]))
 
Copy content pari:[g,chi] = znchar(Mod(2317,6080))
 

Basic properties

Modulus: \(6080\)
Conductor: \(6080\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 6080.dv

\(\chi_{6080}(797,\cdot)\) \(\chi_{6080}(1253,\cdot)\) \(\chi_{6080}(2317,\cdot)\) \(\chi_{6080}(2773,\cdot)\) \(\chi_{6080}(3837,\cdot)\) \(\chi_{6080}(4293,\cdot)\) \(\chi_{6080}(5357,\cdot)\) \(\chi_{6080}(5813,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: Number field defined by a degree 16 polynomial

Values on generators

\((191,5701,1217,1921)\) → \((1,e\left(\frac{15}{16}\right),i,-1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 6080 }(2317, a) \) \(1\)\(1\)\(e\left(\frac{1}{16}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{11}{16}\right)\)\(e\left(\frac{5}{16}\right)\)\(-1\)\(e\left(\frac{11}{16}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{3}{16}\right)\)\(e\left(\frac{5}{16}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 6080 }(2317,a) \;\) at \(\;a = \) e.g. 2