Properties

Label 608.bt
Modulus $608$
Conductor $608$
Order $72$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(608, base_ring=CyclotomicField(72)) M = H._module chi = DirichletCharacter(H, M([36,27,52])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(3,608)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(608\)
Conductor: \(608\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(72\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{72})$
Fixed field: Number field defined by a degree 72 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(13\) \(15\) \(17\) \(21\) \(23\)
\(\chi_{608}(3,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{72}\right)\) \(e\left(\frac{67}{72}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{17}{72}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{43}{72}\right)\) \(e\left(\frac{7}{36}\right)\)
\(\chi_{608}(51,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{72}\right)\) \(e\left(\frac{23}{72}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{47}{72}\right)\) \(e\left(\frac{11}{36}\right)\)
\(\chi_{608}(59,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{72}\right)\) \(e\left(\frac{1}{72}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{11}{72}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{49}{72}\right)\) \(e\left(\frac{13}{36}\right)\)
\(\chi_{608}(67,\cdot)\) \(1\) \(1\) \(e\left(\frac{65}{72}\right)\) \(e\left(\frac{35}{72}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{25}{72}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{59}{72}\right)\) \(e\left(\frac{23}{36}\right)\)
\(\chi_{608}(91,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{72}\right)\) \(e\left(\frac{65}{72}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{67}{72}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{17}{72}\right)\) \(e\left(\frac{17}{36}\right)\)
\(\chi_{608}(147,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{72}\right)\) \(e\left(\frac{7}{72}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{5}{72}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{55}{72}\right)\) \(e\left(\frac{19}{36}\right)\)
\(\chi_{608}(155,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{72}\right)\) \(e\left(\frac{49}{72}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{35}{72}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{25}{72}\right)\) \(e\left(\frac{25}{36}\right)\)
\(\chi_{608}(203,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{72}\right)\) \(e\left(\frac{5}{72}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{55}{72}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{29}{72}\right)\) \(e\left(\frac{29}{36}\right)\)
\(\chi_{608}(211,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{72}\right)\) \(e\left(\frac{55}{72}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{29}{72}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{31}{72}\right)\) \(e\left(\frac{31}{36}\right)\)
\(\chi_{608}(219,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{72}\right)\) \(e\left(\frac{17}{72}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{43}{72}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{41}{72}\right)\) \(e\left(\frac{5}{36}\right)\)
\(\chi_{608}(243,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{72}\right)\) \(e\left(\frac{47}{72}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{13}{72}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{71}{72}\right)\) \(e\left(\frac{35}{36}\right)\)
\(\chi_{608}(299,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{72}\right)\) \(e\left(\frac{61}{72}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{23}{72}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{1}{36}\right)\)
\(\chi_{608}(307,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{31}{72}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{53}{72}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{7}{72}\right)\) \(e\left(\frac{7}{36}\right)\)
\(\chi_{608}(355,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{72}\right)\) \(e\left(\frac{59}{72}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{1}{72}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{11}{72}\right)\) \(e\left(\frac{11}{36}\right)\)
\(\chi_{608}(363,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{72}\right)\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{47}{72}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{13}{72}\right)\) \(e\left(\frac{13}{36}\right)\)
\(\chi_{608}(371,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{72}\right)\) \(e\left(\frac{71}{72}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{61}{72}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{23}{72}\right)\) \(e\left(\frac{23}{36}\right)\)
\(\chi_{608}(395,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{72}\right)\) \(e\left(\frac{29}{72}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{31}{72}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{53}{72}\right)\) \(e\left(\frac{17}{36}\right)\)
\(\chi_{608}(451,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{72}\right)\) \(e\left(\frac{43}{72}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{41}{72}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{19}{72}\right)\) \(e\left(\frac{19}{36}\right)\)
\(\chi_{608}(459,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{72}\right)\) \(e\left(\frac{13}{72}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{71}{72}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{61}{72}\right)\) \(e\left(\frac{25}{36}\right)\)
\(\chi_{608}(507,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{72}\right)\) \(e\left(\frac{41}{72}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{19}{72}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{65}{72}\right)\) \(e\left(\frac{29}{36}\right)\)
\(\chi_{608}(515,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{72}\right)\) \(e\left(\frac{19}{72}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{65}{72}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{67}{72}\right)\) \(e\left(\frac{31}{36}\right)\)
\(\chi_{608}(523,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{72}\right)\) \(e\left(\frac{53}{72}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{7}{72}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{5}{72}\right)\) \(e\left(\frac{5}{36}\right)\)
\(\chi_{608}(547,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{72}\right)\) \(e\left(\frac{11}{72}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{49}{72}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{35}{72}\right)\) \(e\left(\frac{35}{36}\right)\)
\(\chi_{608}(603,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{72}\right)\) \(e\left(\frac{25}{72}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{59}{72}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{72}\right)\) \(e\left(\frac{1}{36}\right)\)