sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(608, base_ring=CyclotomicField(8))
M = H._module
chi = DirichletCharacter(H, M([4,3,0]))
pari:[g,chi] = znchar(Mod(419,608))
\(\chi_{608}(115,\cdot)\)
\(\chi_{608}(267,\cdot)\)
\(\chi_{608}(419,\cdot)\)
\(\chi_{608}(571,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((191,229,97)\) → \((-1,e\left(\frac{3}{8}\right),1)\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) |
\( \chi_{ 608 }(419, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(i\) | \(i\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(1\) | \(-1\) | \(e\left(\frac{7}{8}\right)\) | \(-i\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)