Properties

Label 605.56
Modulus $605$
Conductor $121$
Order $11$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(605, base_ring=CyclotomicField(22))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,2]))
 
pari: [g,chi] = znchar(Mod(56,605))
 

Basic properties

Modulus: \(605\)
Conductor: \(121\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(11\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{121}(56,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 605.k

\(\chi_{605}(56,\cdot)\) \(\chi_{605}(111,\cdot)\) \(\chi_{605}(166,\cdot)\) \(\chi_{605}(221,\cdot)\) \(\chi_{605}(276,\cdot)\) \(\chi_{605}(331,\cdot)\) \(\chi_{605}(386,\cdot)\) \(\chi_{605}(441,\cdot)\) \(\chi_{605}(496,\cdot)\) \(\chi_{605}(551,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((122,486)\) → \((1,e\left(\frac{1}{11}\right))\)

Values

\(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(12\)\(13\)\(14\)
\(1\)\(1\)\(e\left(\frac{1}{11}\right)\)\(1\)\(e\left(\frac{2}{11}\right)\)\(e\left(\frac{1}{11}\right)\)\(e\left(\frac{7}{11}\right)\)\(e\left(\frac{3}{11}\right)\)\(1\)\(e\left(\frac{2}{11}\right)\)\(e\left(\frac{2}{11}\right)\)\(e\left(\frac{8}{11}\right)\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: 11.11.672749994932560009201.1

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 605 }(56,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{605}(56,\cdot)) = \sum_{r\in \Z/605\Z} \chi_{605}(56,r) e\left(\frac{2r}{605}\right) = 2.6857662593+10.667082994i \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 605 }(56,·),\chi_{ 605 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{605}(56,\cdot),\chi_{605}(1,\cdot)) = \sum_{r\in \Z/605\Z} \chi_{605}(56,r) \chi_{605}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 605 }(56,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{605}(56,·)) = \sum_{r \in \Z/605\Z} \chi_{605}(56,r) e\left(\frac{1 r + 2 r^{-1}}{605}\right) = 65.020933114+19.0918685579i \)