sage: from sage.modular.dirichlet import DirichletCharacter
sage: H = DirichletGroup(605, base_ring=CyclotomicField(22))
sage: M = H._module
sage: chi = DirichletCharacter(H, M([11,16]))
pari: [g,chi] = znchar(Mod(199,605))
Basic properties
Modulus: | \(605\) | |
Conductor: | \(605\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(22\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 605.o
\(\chi_{605}(34,\cdot)\) \(\chi_{605}(89,\cdot)\) \(\chi_{605}(144,\cdot)\) \(\chi_{605}(199,\cdot)\) \(\chi_{605}(254,\cdot)\) \(\chi_{605}(309,\cdot)\) \(\chi_{605}(419,\cdot)\) \(\chi_{605}(474,\cdot)\) \(\chi_{605}(529,\cdot)\) \(\chi_{605}(584,\cdot)\)
sage: chi.galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Values on generators
\((122,486)\) → \((-1,e\left(\frac{8}{11}\right))\)
Values
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(12\) | \(13\) | \(14\) |
\(1\) | \(1\) | \(e\left(\frac{5}{22}\right)\) | \(-1\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(1\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{9}{11}\right)\) |
Related number fields
Field of values: | \(\Q(\zeta_{11})\) |
Fixed field: | 22.22.22099245882898413967719412126414511946210986328125.1 |
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
\(\displaystyle \tau_{2}(\chi_{605}(199,\cdot)) = \sum_{r\in \Z/605\Z} \chi_{605}(199,r) e\left(\frac{2r}{605}\right) = -16.5845977265+18.1645566489i \)
Jacobi sum
sage: chi.jacobi_sum(n)
\( \displaystyle J(\chi_{605}(199,\cdot),\chi_{605}(1,\cdot)) = \sum_{r\in \Z/605\Z} \chi_{605}(199,r) \chi_{605}(1,1-r) = 0 \)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)
\( \displaystyle K(1,2,\chi_{605}(199,·))
= \sum_{r \in \Z/605\Z}
\chi_{605}(199,r) e\left(\frac{1 r + 2 r^{-1}}{605}\right)
= -0.0 \)