Properties

Label 605.112
Modulus $605$
Conductor $55$
Order $20$
Real no
Primitive no
Minimal no
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(605, base_ring=CyclotomicField(20))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([5,2]))
 
pari: [g,chi] = znchar(Mod(112,605))
 

Basic properties

Modulus: \(605\)
Conductor: \(55\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(20\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{55}(2,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 605.m

\(\chi_{605}(112,\cdot)\) \(\chi_{605}(118,\cdot)\) \(\chi_{605}(233,\cdot)\) \(\chi_{605}(282,\cdot)\) \(\chi_{605}(403,\cdot)\) \(\chi_{605}(457,\cdot)\) \(\chi_{605}(578,\cdot)\) \(\chi_{605}(602,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((122,486)\) → \((i,e\left(\frac{1}{10}\right))\)

Values

\(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(12\)\(13\)\(14\)
\(1\)\(1\)\(e\left(\frac{7}{20}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{1}{10}\right)\)\(i\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{3}{10}\right)\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: \(\Q(\zeta_{55})^+\)

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 605 }(112,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{605}(112,\cdot)) = \sum_{r\in \Z/605\Z} \chi_{605}(112,r) e\left(\frac{2r}{605}\right) = 0.0 \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 605 }(112,·),\chi_{ 605 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{605}(112,\cdot),\chi_{605}(1,\cdot)) = \sum_{r\in \Z/605\Z} \chi_{605}(112,r) \chi_{605}(1,1-r) = 11 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 605 }(112,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{605}(112,·)) = \sum_{r \in \Z/605\Z} \chi_{605}(112,r) e\left(\frac{1 r + 2 r^{-1}}{605}\right) = 0.0 \)