# Properties

 Modulus 6048 Conductor 6048 Order 72 Real no Primitive yes Minimal yes Parity even Orbit label 6048.ju

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(6048)

sage: M = H._module

sage: chi = DirichletCharacter(H, M([36,63,64,12]))

pari: [g,chi] = znchar(Mod(115,6048))

## Basic properties

 sage: chi.conductor()  pari: znconreyconductor(g,chi) Modulus = 6048 Conductor = 6048 sage: chi.multiplicative_order()  pari: charorder(g,chi) Order = 72 Real = no sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization] Primitive = yes Minimal = yes sage: chi.is_odd()  pari: zncharisodd(g,chi) Parity = even Orbit label = 6048.ju Orbit index = 255

## Galois orbit

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(4159,3781,3809,2593)$$ → $$(-1,e\left(\frac{7}{8}\right),e\left(\frac{8}{9}\right),e\left(\frac{1}{6}\right))$$

## Values

 -1 1 5 11 13 17 19 23 25 29 31 37 $$1$$ $$1$$ $$e\left(\frac{11}{72}\right)$$ $$e\left(\frac{7}{72}\right)$$ $$e\left(\frac{53}{72}\right)$$ $$1$$ $$e\left(\frac{1}{8}\right)$$ $$e\left(\frac{31}{36}\right)$$ $$e\left(\frac{11}{36}\right)$$ $$e\left(\frac{37}{72}\right)$$ $$e\left(\frac{4}{9}\right)$$ $$e\left(\frac{13}{24}\right)$$
value at  e.g. 2

## Related number fields

 Field of values $$\Q(\zeta_{72})$$