Properties

Conductor 3021
Order 36
Real No
Primitive No
Parity Even
Orbit Label 6042.bo

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
 
sage: H = DirichletGroup_conrey(6042)
 
sage: chi = H[23]
 
pari: [g,chi] = znchar(Mod(23,6042))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Conductor = 3021
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 36
Real = No
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = No
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = Even
Orbit label = 6042.bo
Orbit index = 41

Galois orbit

sage: chi.sage_character().galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{6042}(23,\cdot)\) \(\chi_{6042}(719,\cdot)\) \(\chi_{6042}(1355,\cdot)\) \(\chi_{6042}(1613,\cdot)\) \(\chi_{6042}(2627,\cdot)\) \(\chi_{6042}(2885,\cdot)\) \(\chi_{6042}(3521,\cdot)\) \(\chi_{6042}(3581,\cdot)\) \(\chi_{6042}(3899,\cdot)\) \(\chi_{6042}(4793,\cdot)\) \(\chi_{6042}(5489,\cdot)\) \(\chi_{6042}(5747,\cdot)\)

Inducing primitive character

\(\chi_{3021}(23,\cdot)\)

Values on generators

\((2015,4771,2281)\) → \((-1,e\left(\frac{1}{9}\right),-i)\)

Values

-11571113172325293135
\(1\)\(1\)\(e\left(\frac{19}{36}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{35}{36}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{25}{36}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{36})\)