Properties

Conductor 2009
Order 84
Real No
Primitive No
Parity Even
Orbit Label 6027.do

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
 
sage: H = DirichletGroup_conrey(6027)
 
sage: chi = H[319]
 
pari: [g,chi] = znchar(Mod(319,6027))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Conductor = 2009
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 84
Real = No
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = No
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = Even
Orbit label = 6027.do
Orbit index = 93

Galois orbit

sage: chi.sage_character().galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{6027}(319,\cdot)\) \(\chi_{6027}(583,\cdot)\) \(\chi_{6027}(688,\cdot)\) \(\chi_{6027}(1075,\cdot)\) \(\chi_{6027}(1180,\cdot)\) \(\chi_{6027}(1444,\cdot)\) \(\chi_{6027}(1936,\cdot)\) \(\chi_{6027}(2041,\cdot)\) \(\chi_{6027}(2305,\cdot)\) \(\chi_{6027}(2410,\cdot)\) \(\chi_{6027}(2797,\cdot)\) \(\chi_{6027}(2902,\cdot)\) \(\chi_{6027}(3271,\cdot)\) \(\chi_{6027}(3658,\cdot)\) \(\chi_{6027}(3763,\cdot)\) \(\chi_{6027}(4027,\cdot)\) \(\chi_{6027}(4132,\cdot)\) \(\chi_{6027}(4519,\cdot)\) \(\chi_{6027}(4888,\cdot)\) \(\chi_{6027}(4993,\cdot)\) \(\chi_{6027}(5380,\cdot)\) \(\chi_{6027}(5485,\cdot)\) \(\chi_{6027}(5749,\cdot)\) \(\chi_{6027}(5854,\cdot)\)

Inducing primitive character

\(\chi_{2009}(319,\cdot)\)

Values on generators

\((4019,493,2794)\) → \((1,e\left(\frac{8}{21}\right),i)\)

Values

-112458101113161719
\(1\)\(1\)\(e\left(\frac{17}{42}\right)\)\(e\left(\frac{17}{21}\right)\)\(e\left(\frac{23}{42}\right)\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{20}{21}\right)\)\(e\left(\frac{83}{84}\right)\)\(e\left(\frac{9}{28}\right)\)\(e\left(\frac{13}{21}\right)\)\(e\left(\frac{65}{84}\right)\)\(e\left(\frac{7}{12}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{84})\)