sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(6027)
sage: chi = H[295]
pari: [g,chi] = znchar(Mod(295,6027))
Basic properties
sage: chi.conductor()
pari: znconreyconductor(g,chi)
| ||
Conductor | = | 41 |
sage: chi.multiplicative_order()
pari: charorder(g,chi)
| ||
Order | = | 20 |
Real | = | No |
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
| ||
Primitive | = | No |
sage: chi.is_odd()
pari: zncharisodd(g,chi)
| ||
Parity | = | Even |
Orbit label | = | 6027.bw |
Orbit index | = | 49 |
Galois orbit
sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(\chi_{6027}(295,\cdot)\) \(\chi_{6027}(736,\cdot)\) \(\chi_{6027}(1030,\cdot)\) \(\chi_{6027}(1471,\cdot)\) \(\chi_{6027}(1765,\cdot)\) \(\chi_{6027}(2206,\cdot)\) \(\chi_{6027}(3382,\cdot)\) \(\chi_{6027}(5146,\cdot)\)
Inducing primitive character
Values on generators
\((4019,493,2794)\) → \((1,1,e\left(\frac{19}{20}\right))\)
Values
-1 | 1 | 2 | 4 | 5 | 8 | 10 | 11 | 13 | 16 | 17 | 19 |
\(1\) | \(1\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{11}{20}\right)\) |
Related number fields
Field of values | \(\Q(\zeta_{20})\) |