Basic properties
sage: chi.conductor()
pari: znconreyconductor(g,chi)
| ||
Conductor | = | 3009 |
sage: chi.multiplicative_order()
pari: charorder(g,chi)
| ||
Order | = | 464 |
Real | = | No |
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
| ||
Primitive | = | No |
sage: chi.is_odd()
pari: zncharisodd(g,chi)
| ||
Parity | = | Even |
Orbit label | = | 6018.bn |
Orbit index | = | 40 |
Galois orbit
\(\chi_{6018}(5,\cdot)\) \(\chi_{6018}(29,\cdot)\) \(\chi_{6018}(41,\cdot)\) \(\chi_{6018}(71,\cdot)\) \(\chi_{6018}(95,\cdot)\) \(\chi_{6018}(107,\cdot)\) \(\chi_{6018}(125,\cdot)\) \(\chi_{6018}(143,\cdot)\) \(\chi_{6018}(167,\cdot)\) \(\chi_{6018}(197,\cdot)\) \(\chi_{6018}(245,\cdot)\) \(\chi_{6018}(299,\cdot)\) \(\chi_{6018}(311,\cdot)\) \(\chi_{6018}(317,\cdot)\) \(\chi_{6018}(371,\cdot)\) \(\chi_{6018}(449,\cdot)\) \(\chi_{6018}(479,\cdot)\) \(\chi_{6018}(521,\cdot)\) \(\chi_{6018}(551,\cdot)\) \(\chi_{6018}(605,\cdot)\) \(\chi_{6018}(617,\cdot)\) \(\chi_{6018}(635,\cdot)\) \(\chi_{6018}(641,\cdot)\) \(\chi_{6018}(653,\cdot)\) \(\chi_{6018}(677,\cdot)\) \(\chi_{6018}(725,\cdot)\) \(\chi_{6018}(737,\cdot)\) \(\chi_{6018}(743,\cdot)\) \(\chi_{6018}(779,\cdot)\) \(\chi_{6018}(845,\cdot)\) ...
Inducing primitive character
Values on generators
\((4013,1771,1123)\) → \((-1,e\left(\frac{5}{16}\right),e\left(\frac{17}{29}\right))\)
Values
-1 | 1 | 5 | 7 | 11 | 13 | 19 | 23 | 25 | 29 | 31 | 35 |
\(1\) | \(1\) | \(e\left(\frac{269}{464}\right)\) | \(e\left(\frac{459}{464}\right)\) | \(e\left(\frac{159}{464}\right)\) | \(e\left(\frac{73}{116}\right)\) | \(e\left(\frac{151}{232}\right)\) | \(e\left(\frac{455}{464}\right)\) | \(e\left(\frac{37}{232}\right)\) | \(e\left(\frac{453}{464}\right)\) | \(e\left(\frac{249}{464}\right)\) | \(e\left(\frac{33}{58}\right)\) |
Related number fields
Field of values | \(\Q(\zeta_{464})\) |