Properties

Conductor 751
Order 3
Real No
Primitive No
Parity Even
Orbit Label 6008.i

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
 
sage: H = DirichletGroup_conrey(6008)
 
sage: chi = H[4433]
 
pari: [g,chi] = znchar(Mod(4433,6008))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Conductor = 751
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 3
Real = No
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = No
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = Even
Orbit label = 6008.i
Orbit index = 9

Galois orbit

sage: chi.sage_character().galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{6008}(4433,\cdot)\) \(\chi_{6008}(5329,\cdot)\)

Inducing primitive character

\(\chi_{751}(678,\cdot)\)

Values on generators

\((1503,3005,1505)\) → \((1,1,e\left(\frac{1}{3}\right))\)

Values

-113579111315171921
\(1\)\(1\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(1\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{3}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{3})\)