Conductor 29
Order 7
Real No
Primitive No
Parity Even
Orbit Label 6003.u

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(6003)
sage: chi = H[1243]
pari: [g,chi] = znchar(Mod(1243,6003))

Basic properties

sage: chi.conductor()
pari: znconreyconductor(g,chi)
Conductor = 29
sage: chi.multiplicative_order()
pari: charorder(g,chi)
Order = 7
Real = No
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
Primitive = No
sage: chi.is_odd()
pari: zncharisodd(g,chi)
Parity = Even
Orbit label = 6003.u
Orbit index = 21

Galois orbit

sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

\(\chi_{6003}(1243,\cdot)\) \(\chi_{6003}(2278,\cdot)\) \(\chi_{6003}(2485,\cdot)\) \(\chi_{6003}(2692,\cdot)\) \(\chi_{6003}(3313,\cdot)\) \(\chi_{6003}(4141,\cdot)\)

Inducing primitive character


Values on generators

\((668,3133,4555)\) → \((1,1,e\left(\frac{4}{7}\right))\)


value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{7})\)