Properties

Label 6001.764
Modulus $6001$
Conductor $6001$
Order $22$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(6001)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([11,20]))
 
pari: [g,chi] = znchar(Mod(764,6001))
 

Basic properties

Modulus: \(6001\)
Conductor: \(6001\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(22\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 6001.bx

\(\chi_{6001}(764,\cdot)\) \(\chi_{6001}(1597,\cdot)\) \(\chi_{6001}(2702,\cdot)\) \(\chi_{6001}(3161,\cdot)\) \(\chi_{6001}(3433,\cdot)\) \(\chi_{6001}(3552,\cdot)\) \(\chi_{6001}(4453,\cdot)\) \(\chi_{6001}(4776,\cdot)\) \(\chi_{6001}(5082,\cdot)\) \(\chi_{6001}(5779,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((2825,3180)\) → \((-1,e\left(\frac{10}{11}\right))\)

Values

\(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\(1\)\(1\)\(e\left(\frac{1}{11}\right)\)\(e\left(\frac{9}{22}\right)\)\(e\left(\frac{2}{11}\right)\)\(e\left(\frac{9}{22}\right)\)\(-1\)\(-1\)\(e\left(\frac{3}{11}\right)\)\(e\left(\frac{9}{11}\right)\)\(-1\)\(e\left(\frac{1}{22}\right)\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: Number field defined by a degree 22 polynomial