# Properties

 Conductor 600 Order 10 Real No Primitive Yes Parity Odd Orbit Label 600.bj

# Related objects

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed

sage: H = DirichletGroup_conrey(600)

sage: chi = H[461]

pari: [g,chi] = znchar(Mod(461,600))

## Basic properties

 sage: chi.conductor()  pari: znconreyconductor(g,chi) Conductor = 600 sage: chi.multiplicative_order()  pari: charorder(g,chi) Order = 10 Real = No sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization] Primitive = Yes sage: chi.is_odd()  pari: zncharisodd(g,chi) Parity = Odd Orbit label = 600.bj Orbit index = 36

## Galois orbit

sage: chi.sage_character().galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(151,301,401,577)$$ → $$(1,-1,-1,e\left(\frac{4}{5}\right))$$

## Values

 -1 1 7 11 13 17 19 23 29 31 37 41 $$-1$$ $$1$$ $$1$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{7}{10}\right)$$
value at  e.g. 2

## Related number fields

 Field of values $$\Q(\zeta_{5})$$

## Gauss sum

sage: chi.sage_character().gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 600 }(461,·) )\;$$ at $$\;a =$$ e.g. 2
$$\displaystyle \tau_{2}(\chi_{600}(461,\cdot)) = \sum_{r\in \Z/600\Z} \chi_{600}(461,r) e\left(\frac{r}{300}\right) = 0.0$$

## Jacobi sum

sage: chi.sage_character().jacobi_sum(n)

$$J(\chi_{ 600 }(461,·),\chi_{ 600 }(n,·)) \;$$ for $$\; n =$$ e.g. 1
$$\displaystyle J(\chi_{600}(461,\cdot),\chi_{600}(1,\cdot)) = \sum_{r\in \Z/600\Z} \chi_{600}(461,r) \chi_{600}(1,1-r) = 0$$

## Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)

$$K(a,b,\chi_{ 600 }(461,·)) \;$$ at $$\; a,b =$$ e.g. 1,2
$$\displaystyle K(1,2,\chi_{600}(461,·)) = \sum_{r \in \Z/600\Z} \chi_{600}(461,r) e\left(\frac{1 r + 2 r^{-1}}{600}\right) = -0.0$$