# Properties

 Label 6.5 Modulus $6$ Conductor $3$ Order $2$ Real yes Primitive no Minimal yes Parity odd

# Related objects

Show commands: Pari/GP / SageMath

This is the Dirichlet character of smallest modulus which is not primitive and also is nontrivial.

sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(6, base_ring=CyclotomicField(2))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([1]))

pari: [g,chi] = znchar(Mod(5,6))

## Basic properties

 Modulus: $$6$$ Conductor: $$3$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$2$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: yes Primitive: no, induced from $$\chi_{3}(2,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 6.b

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q$$ Fixed field: $$\Q(\sqrt{-3})$$

## Values on generators

$$5$$ → $$-1$$

## Values

 $$-1$$ $$1$$ $$-1$$ $$1$$
sage: chi.jacobi_sum(n)

$$\chi_{ 6 }(5,a) \;$$ at $$\;a =$$ e.g. 2

## Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 6 }(5,·) )\;$$ at $$\;a =$$ e.g. 2

## Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 6 }(5,·),\chi_{ 6 }(n,·)) \;$$ for $$\; n =$$ e.g. 1

## Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 6 }(5,·)) \;$$ at $$\; a,b =$$ e.g. 1,2