Basic properties
sage: chi.conductor()
pari: znconreyconductor(g,chi)
| ||
Conductor | = | 59 |
sage: chi.multiplicative_order()
pari: charorder(g,chi)
| ||
Order | = | 58 |
Real | = | No |
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
| ||
Primitive | = | Yes |
sage: chi.is_odd()
pari: zncharisodd(g,chi)
| ||
Parity | = | Odd |
Orbit label | = | 59.d |
Orbit index | = | 4 |
Galois orbit
\(\chi_{59}(2,\cdot)\) \(\chi_{59}(6,\cdot)\) \(\chi_{59}(8,\cdot)\) \(\chi_{59}(10,\cdot)\) \(\chi_{59}(11,\cdot)\) \(\chi_{59}(13,\cdot)\) \(\chi_{59}(14,\cdot)\) \(\chi_{59}(18,\cdot)\) \(\chi_{59}(23,\cdot)\) \(\chi_{59}(24,\cdot)\) \(\chi_{59}(30,\cdot)\) \(\chi_{59}(31,\cdot)\) \(\chi_{59}(32,\cdot)\) \(\chi_{59}(33,\cdot)\) \(\chi_{59}(34,\cdot)\) \(\chi_{59}(37,\cdot)\) \(\chi_{59}(38,\cdot)\) \(\chi_{59}(39,\cdot)\) \(\chi_{59}(40,\cdot)\) \(\chi_{59}(42,\cdot)\) \(\chi_{59}(43,\cdot)\) \(\chi_{59}(44,\cdot)\) \(\chi_{59}(47,\cdot)\) \(\chi_{59}(50,\cdot)\) \(\chi_{59}(52,\cdot)\) \(\chi_{59}(54,\cdot)\) \(\chi_{59}(55,\cdot)\) \(\chi_{59}(56,\cdot)\)
Values on generators
\(2\) → \(e\left(\frac{39}{58}\right)\)
Values
-1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
\(-1\) | \(1\) | \(e\left(\frac{39}{58}\right)\) | \(e\left(\frac{18}{29}\right)\) | \(e\left(\frac{10}{29}\right)\) | \(e\left(\frac{1}{29}\right)\) | \(e\left(\frac{17}{58}\right)\) | \(e\left(\frac{3}{29}\right)\) | \(e\left(\frac{1}{58}\right)\) | \(e\left(\frac{7}{29}\right)\) | \(e\left(\frac{41}{58}\right)\) | \(e\left(\frac{47}{58}\right)\) |
Related number fields
Field of values | \(\Q(\zeta_{29})\) |